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ABSTRACT

Two rocket-borne proportional counters each with 650 cm2 net area

and 1.8° x 7.10° ~FI rectangular mechanical collimation surveyed the

Cygnus region in the 2-20 keV energy range on two separate occasions.

X-ray spectral data gathered on September 21, 1970 from discrete sources

in Cygnus are presented. The data from Cyg X-1, Cyg X-2, and Cyg X-3

have sufficient statistical significance to clearly indicate mutually

exclusive spectral forms for the three. Upper limits are presented for

x-ray intensities above 2 keV for Cyg X-4 and Cyg X-5 (Cygnus Loop).

A search was made on August 9, 1971 for a diffuse component of

x-rays > 1.5 keV associated with an interarm region of the galaxy at

galactic longitudes in the vicinity of 60 degrees. A statistically

significant excess associated with a narrow disk component was detected.

The angular extent of this component has a most probable value of 2

degrees and may be as large as 7 degrees at 90% confidence. The best fit

spectrum yields an intensity of 2.9 photons (cm2-sec-ster) over the

2 - 10 keV range. The 3a upper limit to any emission (e.g. iron line)

in a 1.5 keV band centered at 7 keV from galactic latitudes IbI ' 3.5

degrees is .3 photons (cm2 -sec-ster)'
-
1. Several possible emission models

are discussed, with the most likely candidate being a population of

unresolvable low luminosity discrete sources.
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CHAPTER I

INTRODUCTION

A. General

For nearly a decade the photon energy range from 1 to about 500 keV

has been detected from celestial sources situated outside the solar

system. Many of the discrete sources are concentrated near the plane

of our galaxy, while an isotropic diffuse component of x-ray radiation

appears to cover the entire sky.

The relationship of discrete x-ray sources to other stellar objects

is still a question that remains to be resolved. The apparent increase

in the number of such objects near the galactic plane suggests that

galactic sources such as supernovae remnants, old novae, high temperature

stars, pulsars, and binary systems are likely candidates. While some

x-ray sources are known to be supernovae remnants (e.g. the Crab Nebula)

and others binary systems (e.g. Cygnus X-2), it is possible that x-ray

objects represent a peculiar variety of any of the objects mentioned.

Recently, pulsars such as the one observed in the core of the Crab Nebula

(which emits pulses of radiation in the radio through x-ray band at

intervals of about 33 milliseconds) have aroused interest in compact

objects called neutron stars, which could be responsible for the observed

pulsations. Neutron stars are composed mainly of neutron-rich nuclear

matter, have small radii (- 10 km), have high density (_ 1015 gm/cm3),

and can have huge magnetic fields (~ 1014 gauss) capable of accelerating

particles to relativistic velocities. With the continual discovery of

1
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new pulsars, unique objects have been found. The discrete x-ray source

Cygnus X-1 has been observed (Oda et al., 1971; Holt et al., 1971) to

be pulsating at irregular intervals with periods ranging from about 73

milliseconds to several seconds. In addition, no known supernova

remnant surrounds it. Whether this object is a. neutron star or an even

further collapsed stage called a "black hole" (an object making its

presence known only by its gravitational field) is a question requiring

theoretical breakthroughs in particle physics as well as further spectral

observations.

The diffuse isotropic background seen by all celestial x-ray experi-

ments is perhaps of even more cosmological significance than the under-

standing of discrete sources. In both cases the same high-energy process

may be involved; however, it is quite likely that the photons comprising

the universal 2.70 K blackbody radiation originated with the birth of our

universe some 1010 years ago and are seen today as x-rays after being

inverse Compton scattered by extragalactic electrons.

Our own galaxy, the Milky Way, is a convenient local laboratory for

investigating high energy processes referred to above, and at x-ray

wavelengths (< 10 A) most of the galaxy can be probed. Emission from

hot plasmas on the order of 107 OK including thermal bremsstrahlung,

recombination, and line radiation can be studied in discrete sources.

The search for diffuse x-ray emission from processes such as inverse

Compton and synchrotron radiation involving ultrarelativistic electrons

provides information on the distribution of these particles in the

galaxy. Non-thermal bremsstrahlung involving suprathermal charged

particle collisions with ambient electrons is a mechanism which heats

up the interstellar medium. For protons with kinetic energies on the



3

order of tens of MeV, comparison of x-ray emission with calculated and

observed ionization rates sets limits on the particle population. The

spectra of these mechanisms as well as their temporal variations at

photon energies exceeding a few keV allows direct observation of some

of the most powerful energies sources known, and in conjunction with

measurements from other parts of the electromagnetic spectrum, x-rays

can be a useful tool in studying the structure of our galaxy and

universe.

B. Purpose

Since 1962, at least five discrete x-ray sources have been located

in the Cygnus-Orion spiral arm of our galaxy. These sources have been

observed on an irregular basis since.1962 from both rocket, balloon,

and satellite experiments and have displayed a variety of intensities

and spectral shapes as a group as well as individually. The first part

of this thesis is devoted to a study of these discrete objects in the

energy range 2 - 20 keV, placing the emphasis on model fits to the

spectra of sources observed in a rocket flight launched September 21,

1970.

Between galactic longitudes 450 - 700 and at galactic latitude 00

there was a lack of any discrete sources above a sensitivity of .02

photons (cm2 -sec)
-
l at energies greater than 2 keV based on 3a background

statistics from the data of the 1970 flight. Investigations by Kerr and

Westerhout (1965), using radio observations of the hyperfine transition

line in neutral hydrogen at 21 cm, have shown the region of galactic

longitude 450 S e < 700 to be an interarm region of our galaxy. Since

then, Shane and Bieger-Smith (1966) using 21 cm data found neutral
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hydrogen with radial velocities larger than expected from galactic

rotation at I = 63.00 and b = 00. Katgert (1968) has identified this

excess with a local neutral hydrogen ring structure 40 in diameter

centered at A = 61.50 and b = -0.30° . This interarm region provides the

motive for the second part of this thesis which concerns itself with

the detection of a diffuse galactic component in the x-ray range above

2 keV. Several theories are investigated as an explanation for such an

excess.

C. Previous Discrete Source Observations

On June 18, 1962 the first celestial x-rays were observed from

rocket-borne Geiger counters flown by Giacconi et al. (1962). Subse-

quent rocket flights by the same group in October of 1962 and June of

1963 indicated that the source of some of the celestial x-rays was in

the Cygnus constellation. Bowyer, Byram, Chubb, and Friedman (1965)

reported seeing two x-ray sources in the Cygnus region in June and No-

vember of 1964 which were later identified as Cygnus XR-1 and Cygnus XR-2.

In the same year, Fisher, et al. (1966) saw a single source in the Cygnus

constellation. Rocket flights by the Naval Research Laboratory in 1965

and 1966 revealed a total of four Cygnus sources as well as a fourfold

change in intensity in the Cygnus XR-1 spectrum below 10 keV as reported

by Byram, Chubb, and Friedman (1966). Since then, variability in the

intensity of Cygnus XR-1 has been verified by a number of observers whose

results extend over 1 - 300 keV energy range. A comprehensive survey of

this variability has been compiled by Dolan (1970) who finds that above

20 keV a period of almost 3 days between the maxima in intensity is

the best result obtainable with inconclusive statistics. Below 20 keV
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the only good evidence for variability that existed up to now were

the N.R.L. results mentioned above.

The UHURU x-ray satellite launched in December of 1970 has recently

observed Cygnus X-1 in the 2 - 20 keV range with surprising results.

Not only does the object appear to have short term variations in

strength on the order of,tens to hundreds of milliseconds (Oda et al.

(1971) )s confirmed by Holt et al. (1971), but its intensity as well as

spectral shape have changed over longer periods of observation by UHURU.

In October 1966, A.S.E. launched a rocket containing proportional

counters sensitive to the energy range 2 - 20 keV and obtained results

concerning three sources in the Cygnus region. Their energy resolution

was sufficient enough (21% at 5.9 keV) to discriminate between accept-

able spectral shapes more accurately than previous data permitted.

Acceptable fits for both power law and exponential functions for Cygnus

X-l, Cygnus X-2, and Cygnus X-3 were found as well as limits on the

amount of low energy x-ray absorption by interstellar matter. When

extrapolated to higher energies these results are found to be compatible

with the balloon results of Haymes (1968) and Peterson (1968) for

Cygnus X-1 and Rocchia et al. (1969) for Cygnus X-3. In 1967, Giacconi

et al. (1967a)proposed an optical identification of Cygnus X-2 which is

believed to be a binary system, one component being a G type subdwarf.

In September 1967, N.R.L. was also able to obtain an exponential fit to

the Cygnus XR-2 spectra in the 1.5 - 13 keV range. This fit, however,

produced a temperature larger than the limit given by Gorenstein et

al. (1967).

The Cygnus Loop or Veil Nebula is believed to be a supernova

remnant which exploded about 104 years ago and has been observed both
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optically by Parker (1967) and in the radio band by Minkowski (1968).

The latter measurement shows the source to have an apparent angular

diameter of about 30. Recently, x-ray surveys of this object were made

by Grader et al. (1970) and Gorenstein et al. (1971) which indicate

that it is the same as the source Vul XR-1 observed by N.R.L. in 1964-65.

The Grader experiment covered an energy range from .2 to 10 keV while

the Gorenstein result was sensitive from .16 to 1.2 keV. Both flights

saw results only in the energy range less than 1.5 keV, and both sets of

data could be fitted with exponential models. A power law also gave an

acceptable fit to the Grader results. In addition, Gorenstein et al.

(1971) has shown evidence that line emission from 0 VIII was present at

.65 keV which favors the exponential model. The source size in x-rays

from the Gorenstein result appears to be approximately the same as the

optical and radio diameters and of uniform intensity.

D. Previous Diffuse Galactic Source Observations

In June 1968, Cooke et al. (1969) launched a rocket experiment

which surveyed the galactic plane in the region I = 2200 - 3500. Their

initial results indicated an excess of x-rays coming from the galactic

plane in the 1.4 - 18 keV energy range as compared with the all sky

background in the same energy range. This excess varied with galactic

longitude ranging from a minimum of 0.3 photons cm'2 sec 'l rad'l near

galactic longitude 2200 to a maximum of about 3 times this value at

galactic longitude 350° . A subsequent flight in April 1969 covering

approximately the same region of the sky revealed that up to 90% of the

excess in the region £ > 2900 could be explained by contributions from

known discrete sources in Centaurus. At smaller galactic longitudes
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observed by Cooke (1971) the x-ray source associated with the Gum Nebula

remnant could account for the observed excess as outlined by Ramaty et al.

(1971).

The OSO III satellite yielded data from which Schwartz (1969)

obtained spectral information for the diffuse galactic component. This

measurement shows that an excess was observed only in the 7.7 - 12.5 keV

range using data from galactic longitudes R = 1200 - 160° and £ = 220° -

240° . The latter range of longitudes contains portions of the Gum Nebula

while the former range contains several possible supernovae remnants.

Recently Bunner et al. (1971), Hayakawa et al. (1970), and Shukla

et al. (1971) have made measurements of the soft diffuse x-ray component

at energies less than 1 keV which include observations of the galactic

plane. These data show an excess above the extragalactic background at

energies less than 300 eV where local phenomena unfortunately are difficult

to account for when extracting the true galactic intensity. It is inter-

esting to note, however, that the 1969 Bunner flight showed no excess in

the energy range 500 to .1000 eV.

Other observations of the galactic plane at energies greater than

20 keV have been obtained by Vette et al. (1970), Clark et al. (1968),

and Bleeker and Deerenberg (1970) which place upper limits as well as a

100 MeV data point on the galactic x-ray and 7-ray intensity.

E. Discrete Source Theories

The transformation of the basic processes which produce x-rays into

a discrete source model poses a difficult problem given the data now

available. For this reason current models are probably representative

of an ideal situation rather than a real one. At the same time, however,
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it is instructive to fit observed spectra with idealized models because

certain processes may dominate in an x-ray source.

The two general classes into which x-ray sources can be grouped are

(1) thermal emitters and (2) non-thermal emitters. In the former class,

the source is composed of particles which exist in equilibrium states

along with photons which, may or may not have a black-body distribution

while the latter class includes all non-equilibrium processes.

1. Thermal sources. Thermal objects emitting x-rays are thought to

be hot plasmas with temperatures on the order of 107 OK. Depending on

the optical thickness of such a source the object may be characterized as

a black-body, "optically thick", or "optically thin" source.

The blackbody source has infinite optical thickness (i.e. photons

and particleshave reached energy equilibrium) the differential energy

spectrum assuming no interstellar absorption is given by:

= 2 hv
3

[exp (hv/kT) - 11-1 ergs (1)
c2 cm2-sec-ster-Hz

where

h = Planck constant

v = photon frequency

k = Boltzmann constant

T = temperature of source in OK

The emission from such a source peaks at an energy hv - 2.8 kT.

An "optically thick" source has a finite optical depth and photons

can be electron-scattered, free-free absorbed, and photoelectrically

absorbed after they are emitted. For a given temperature, the continuum
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of an "optically thick" source is softer than that of a blackbody since

photons escaping from an "optically thick" source have not been scattered

as much in energy space. Figure 1 illustrates this effect for the three

classes of thermal emitters mentioned above. Calculations by Loh and

Garmire (1971) have shown a flattening of a given free-free emission

spectra as well as line broadening and line intensity reduction as a

result of electron scattering. Angel (1969) has also reported that the

spectral line intensities of Kca iron emission are reduced by 90% for

plasma densities on the order of Ne - 1016 and optical depths of 10 or

more. The problem of radiation escaping from plasmas of different optical

depths has also been treated by Felten and Rees (1972) who find that for

optical thicknesses ranging from 2 - 200 there exists a transition region

where the energy flux of the observed radiation becomes proportional to

the photon energy. At lower energies the shape is the standard Raleigh-

Jeans limit proportional to v2 while at larger energies the spectrum takes

the shape of thermal bremsstrahlung emission.

In the case of an"optically thin"thermal source, the plasma is of

low enough density so that radiation escapes without interaction in the

source. The first models of such a source were made in connection with

the solar corona by Elwert (1954) and Seaton (1964). These results were

elaborated upon by Tucker (1966). Since then, cosmic abundances of heavy

elements such as iron have been further studied by Goldberg (1960) and

Nussbaumer and Swings (1970) from line emission in the sun's photosphere,

by Bertsch et al. (1969) from cosmic rays, by Pottach (1968) from the

solar corona, and by Urey (1967) from meteorites. The abundances of iron

relative to hydrogen from the above results range from 4 x 10-6 to

5 x 10-5. The ionization equilibria have also been recalculated by
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Jordan (1970) for heavy elements such as iron. Appendix A shows a

calculation of x-rays that are emitted from an "optically thin" plasma

at temperatures greater than 20 x 106 OK which uses the above data to

determine the continuum as well as iron line emission expected from such

a model.

As a simple approximation to the Tucker model an exponential func-

tion with a constant Gaunt factor is often used to express the continuum

radiation arising from the bremsstrahlung mechanism. This function gives

the steepest spectra for a given temperature of all thermal models dis-

cussed, and thus provides an upper limit to a temperature for a thermal

source model.

Since thermal spectra can vary in shape based, to a large extent, on

optical depth, it is also important to consider constraints imposed by

emission from other parts of the object's electromagnetic spectrum before

forming models from x-ray data alone.

2. Non-thermal sources. The second class of discrete source models

includes all processes where interacting particles, or photons, or electro-

magnetic fields are in non-equilibrium conditions. A review of some of the

more important processes which can produce x-rays follows.

Synchrotron radiation

For a given source function of particles N (particles/erg-cm2) (from

here on only electrons are considered unless otherwise noted) and a mag-

netic field H, the total power emitted (Iv) in a given direction from a

source of small angular size is

IV = J3 >e3 B N(H sin 8) F dE dr m ergs (2)
mc2, cm2-sec-ster-Hz

where Iv is the energy flux emitted from the sum of the two polarization
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modes, 9 is the pitch angle of the electron with respect to the magnetic

field, v is the frequency of the emitted photon and

co

F = /IVc I K5 /3 (ri)dTi (3)
V/Vc

3e H sin 9 E 2
V= (4)c 4 rr mc ( )2

where

e = charge of an electron

m = mass of an electron

E = energy of the electron

c = speed of light

K5/3 = modified Bessel function of order 5/3 and the integration

dE is over energy and the integration dr is along the line of sight

from the observer in the source.

For different electron distributions various spectral shapes arise.

For example, if the electrons are monoenergetic and the magnetic field

is uniform then equation (2) yields

= /3 3 (H sin e) F I N dergs
2mcN dr cm2 -sec-ster

If a power law energy distribution of electrons of the form

-F (particles/erg-cm3)
N = K E and a uniform magnetic field (in gauss)

is used then:

e3 3e (F-l)/2
Iv = mc2 (4r m3 c5 ) a(F)KRH(F+l)/2 (V)- (r-l)/2

(6)

1.35 x 1022 a() +l)/2 ( 6.26 x 10 ) 2
v
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where

R = extent of emission region in line of sight in cm.

a(r) is of the order .1 for 1.5 < F < 5,

which is a power law in photon energy with an index that can be expressed

in terms of the index of the electron distribution.

Other spectral shaples which include breaks or knees can occur if the

magnetic field is allowed to depend on position and the electron distri-

bution is allowed to vary in time. Tucker (1966) has investigated some

of these situations, and Manley and Olbert (1969) have obtained exponen-

tial shaped synchrotron spectra with the injection of monoenergetic

electrons up to a certain energy followed by a sharp cutoff above that

energy.

Inverse Compton scattering

For photon energies much less than 500 keV the Thompson scattering

cross-section is applicable for photons scattered by high energy electrons.

The power transferred to photons via this effect is

dE (7)
dt c CT nph AE (7)

where

oT = Thompson scattering cross section

nph = average number of photons per unit volume

iE = 4/3 X (E/mc2)2 = mean energy transferred (8)

= mean photon energy

E = incident electron energy

Equation 7 remains valid so long as (E/mc2 )2 (I/mc2 )2 < .25. For a

1 eV optical photon this corresponds to an electron energy of E ~ 101l eV.
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The standard approach is to assume a blackbody distribution of

photons in order to derive the differential photon energy spectrum. The

average blackbody photon energy is e a'kT where a a 2.7, k = Boltzmann

constant, and T = temperature. If a power law energy spectrum of elec-

trons N = KE-r (particles/erg-cm3) is used then

Iv = J1 N dE dr nph E T c dE (9)

The third integral in equation 9 may be evaluated if we make the

approximation that the Thompson cross section becomes large only at the

average energy of the blackbody photon distribution. Thus equation 9

becomes.

Iv - 2/3 b(f) aTP (mc2)l-r (4/3 akT)(F-3 )/2 KR(RV)-(
'
-l)/2 (10)

= 4.12 x 10- 4 7 (1.6 x 10-3)-(F-1)/2 KR[10-2'96 2 F b(r)]T(r+ 5) /2

(her)- (-1)/2

where

b(I) is on the order of 1 for 1 < r < 3.5

p = photon energy density

which is the same power law in photons as obtained with synchrotron

radiation using the same initial power law electron energy distribution.

The ratio of the x-ray intensities from the Compton and synchrotron

processes is found from equation 2 and 9. For a power law spectrum of

particles,

IV synch 15 H 2 ( 1.8 x 104 T A 3-r/2

I
v

comp 8 n1. ph 5 kT H

where

H is *in gauss

T is in OK.

(11)
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Previous attempts by Gould (1965) to use equation Ilin order to

explain x-rays arising from the same electron population have been

unsuccess ful.

Non-thermal Bremsstrahlung

For the case of cosmic ray collisions with unionized atoms, the

interaction which produces practically all the radiation is the Coulomb

interaction of the charged incident particle with the nuclei of the target

atom. The atomic electrons, on the other hand, will absorb most of the

energy lost by the incident particle so that with non-relativistic

incident particles the collision losses dominate over the radiative

losses as shown by equation 12.

AE rad. 4 zi2Z)mi 2 1
LE coll. 3r 137 7M n(q)12

where z
i
= charge on incident particle in units of electron charge

Z = charge on target particle in units of electron charge

m
i

= mass of incident particle

M = mass of target particle

X = ; ratio of the velocity of incident particle to the
c

velocity of light

Y2M v2

Pq = ratio of the maximum to minimum impact parameter =
<hy>

for v < < c Equation 12 becomes small and radiation losses are negligible.

In the case of relativistic particles

AE rad. 4Y z 2Z n ( X192mi (13)
LE coll. 3-r £n M (

192mi
mi Ln (Pq)
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where X is a factor of the order of unity which expresses the range of

impact parameters on this semiclassical expression and y is the Lorentz

factor. Heitler (1954) has made a determination of X from detailed

quantum mechanical calculations.

In the 2-20 keV x-ray band it is the non-relativistic incident

particles which are of interest despite the small radiation yield because

these particles radiate a greater percentage of their energy loss into

the 2-20 keV photon range than higher energy particles. An approximate

expression for the photon energy emitted in non-relativistic bremsstrahlung

is

<hg> - E/2 where E is the incident particle's, kinetic energy.

The quantum mechanical cross section for non-relativistic

bremsstrahlung is given by Heitler (1954)

16Z2e2 z2 e2 21 (2E + E-h/)

(hv)ob = 3 1ic (mi -) I 2n[ h ] (14)

the energy loss rate is given by

d dE
dhv(dt) = Vb < hv > n (15)

where n = density of radiating particles

The radiation source function (q) is

(h v)= d (dE) dN dE ers (16)
j dhv dt dEdV cm -sec-erg

where dN _ particles
dEdV erg-cm3

using Eq. (14) and (15) in Eq. (16), we get

2 46 2
8 Z zi e n r £n(JE + /7) _ dN dE (17)

(hv)q = I c1
3CL mmi hv hv E dEdVdEdV
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If we let J = -c (particles/cm -sec-ster-erg) be a power

law distribution in the measured flux then equation (17) becomes

(hv)q 8 zie6 n f(r) A hv- r (18)
3 c m

i

1 l+FLf+X.
2where f(r) = 70 X

r n dx (19)

and X = hv (20)
E

for 0.5 < r < 5

f(r) Fr r
1

6

It is necessary to emphasize that all the mechanisms listed above involve

only steady state homogeneous conditions. No provision has been included

for the time evolution of particle distributions, plasma effects,

anisotropies, and acceleration of particles, all of which may be

necessary to derive detailed source models. Thus the formulas above

are starting points for spectral modeling rather than models in them-

selves.

F. Diffuse Galactic Source Theories

If the assumption is made that the galactic disk x-rays in the

range 1-20 keV as reported by several authors previously mentioned are

diffuse in nature as opposed to contributions from unresolved discrete

sources, then several processes are possible. Boldt (1970) has investi-

gated non-thermal bremsstrahlung radiation arising from knock-on

dl(dV and J have the same spectral shape for ultra-relativistic

particles (8 x 1) so that for inverse Compton and synchrotron spectral
shapes the results are independent of whether dN or J is used)

dEdV
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collisions of subrelativistic cosmic rays with the atomic electron

of interstellar HI. The emissivity of this hydrogen can be calculated

with the aid of a disk model shown in Figure (2) where eg is the angular

thickness of the disk and ed is the FWHM of the detector. An approximate

formula for the emissivity (X) which assumes 100% response over the FWHM

ot the detector, cylindroical collimation, and ed r 9g is given by

4 [I [+ n() -
1

ev (21)
N 0 a sec-Hatom

where I = integral energy flux eV(cm2 -sec-rad)- 1

N = columnar hydrogen density H atoms/cm2

Using a flat energy spectrum of I = .15 keV(keV-cm2-sec-rad)- 1 in the

energy band 1.5 < hv < 12.5 keV based on the Schwartz (1969) and Cooke

(1969) measurements, Ed = 40, corresponding to the Cooke experiment

collimator, and Og = 2 corresponding to the HI disk where

N = 7.3 x 102 0 H atoms cm
-
2 (McGee & Murray 1961) in the direction

£ s 300° , equation (21) yields

= 1.2 x 10- 17 eV(sec-H atom)- 1 (22)

The data from Schwartz (1969) and Bleeker and Deerenberg (1970)

indicate a break in the spectrum somewhere between 10 and 20 keV. If

electrons were the incident subrelativistic particles creating this

bremsstrahlung radiation, their energy would be mostly restricted to

the range 10-20 keV.

Since only a small fraction of the electrons' energy is radiated,

the emissivity found above must be corrected by an equation similar to

(12) in order to find the ionization rate of these electrons. Berger

and Seltzer (1964) have compiled such tables for the radiation fraction
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of the electrons' total collisional loss rate in hydrogen.

The collisional loss rate for the electron energy range 10-20 keV

using the emissivity given by equation (22) has the limits

(d)coll. = (18 - 32) x 104 eV(sec-H atom) (23)

The average energy loss per atom ionized in hydrogen is 36 eV. This

together with (dE) gives the ionization rate (C) per hydrogen atom.

(dE)coll./36 = (5 - 9) x 10-15 (sec-H atom) - 1 (24)

This result is consistent with theoretical estimates by various authors

of 5 10-15 (sec H atom)-1. In addition, pulsar dispersion measures

by Hjellming, Gordon, and Gordon (1969) give 5 (2.5+0.5)xlO-15(sec H atom)

1 .

Intensity measurements of the H8 hyperflne lines in hydrogen between

4862-4863 k provide the recombination rate which for small optical

depths gives a direct measure of C via the relation

4F HM
C =- 13 (25)
EH~ fn e'THB dr

where EH$ = energy of Ha line

FH8 = observed flux

nH = hydrogen density

THB = optical depth

the integration being performed along the line of sight.

Reynolds (1970) finds that the ionization rate could be as high

as 10 (sec H atom)l
1
, however, the collision loss lifetime of 10-20

keV electrons given by

Te = Ee/Ee (26)

where Ee = electron energy

Ee = power radiated by electrons of energy Ee
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is on the order of 103 years (assuming an average density of 1/cm3

for interstellar hydrogen) which requires a compensating acceleration

mechanism for replenishment of such electrons. Pickel'ner and Tsytovich

(1969) have presented arguments against such a population of electrons

existing.

The above discussion applies equally to a subrelativistic proton

population scattered by the atomic electrons of neutral hydrogen. The

numbers above remain approximately the same for protons if the B of the

protons is the same as for the electrons. The corresponding proton

energy is (18-36) MeV and the collision loss lifetime is 1-3x106 years

using the same density of hydrogen atoms as before. This lifetime is

consistent with estimates for the escape lifetime of cosmic rays from

the galaxy which allows a spectral break of 2 at the observed energy,

and at the same time, allows a continuous spectrumof protons to exist

rather than the artificially introduced range of electron energies

required to match observations. This is consistent with the spectra

given by Schwartz (1969) and Cooke (1969).

A number of investigations have been made into the production of

diffuse x-rays via the inverse Compton effect. The scattering of the

universal blackbody 3°K radiation by electrons has been treated by

Brecher and Morrison (1969) who reach the conclusion that this model

is incapable of supporting even the observed extragalactic diffuse

background given present electron densities.

Inverse Compton radiation from starlight requires electrons in the

energy range 13-41 MeV in order to produce 2-10 keV photons. Rees

and Silk (1969) have shown that the collision loss lifetime of such

electrons is comparable to estimates for their confinement time in the
I
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galaxy. For 41 MeV electrons this results in a break in the photon

spectrum of 1/2 at about 10 keV. At the present time, however, this

break would not be large enough to fit the observations. In addition,

Hudson et al. (1971) have found that the upper limit to the intensity

of electrons needed to produce the observed 12.5 keV diffuse galactic

x-rays is about 3 times smaller than the number of electrons required

to produce 100 MeV bremsstrahlung Y rays in the Rees and Silk (1969) model-

A galactic x-ray excess involving inverse Compton scattering of

far infra-red photons (0.4-1.3 mm) by GeV electrons has been proposed

by Shen (1969), Cowsik and Pal (1969), and Ipavich and Lenchek (1970).

If the power law of electrons as given by Anand et al. (1968)

dN= 126 E electrons (m2-sec-ster-GeV) 
- 1
) is used, the resulting

differential photon energy spectrum has an index of 1.81, a value

which is considerably flatter than the upper limit of 3.2 found by

Schwartz (1969). Bleeker and Deerenberg (1970) considered energy limits

on monoenergetic infra-red photons to derive photon spectra and their

results are also inconsistent with observations.

A population of weak unresolved sources has been investigated by

Setti and Woltjer (1970) and Ryter (1970) as a means of producing the

observed galactic excess. The Ryter model assumes the unresolved sources

of the same luminosity class as the resolved sources are uniformly located

at distances greater than a characteristic distance (d) which can be

calculated from the observed strengths of resolved sources and the

observed galactic excess in a given region of the galactic plane. Using

the Seward (1970) catalog of known x-ray sources and the Cooke (1969)

results, Ryter obtains a value for d 2 10 kiloparsecs in the £ = 2500 -

350° region of the plane.
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In addition, Ilovaisky and Ryter (1971) have asserted that the

soft x-ray galactic excess at about 300 eV could be accounted for by

either known or unknown galactic supernovae remnants. In particular

the observations of Bunner et al. (1971) and Hayakawa et al. (1970)

previously mentioned include galactic plane regions where supernovae

remnants are found. The'region of the Cooke (1969) measurements contains

the Vela supernova remnant, and the Schwartz (1969) results also include

possible supernovae regions. Until better x-ray spectra of such objects

are obtained it is difficult to make positive identifications with such

objects.

The following chapter explains the physical de'sign of the propor-

tional chambers and the accompanying electronic systems. Chapter III

covers the methods of data analysis used to interpret the data, while

Chapter IV outlines the general features of the two rocket flights.

Results of both flights are presented individually in Chapter V and a

discussion of these results is found in Chapter VI. Appendix A involves

an explanation of the spectral models used in the data analysis as well

as a detailed calculation of radiation from a hot"optically thin"plasma.

Appendix B outlines an attempt to calibrate the detectors with a continuous

energy source of x-rays produced via the thin-target bremsstrahlung

mechanism.
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CHAPTER II

DESCRIPTION OF THE DETECTORS

A. Proportional Chambexs

The x-ray detectors consist of two multi-anode, multi-layer

aluminum gas proportional chambers pressurized to slightly more than one

atmosphere. One detector contains a mixture of 90% argon, 10% methane

and the other a mixture of 90% xenon, 10% methane. Rectangular mechan-

ical collimators made of copper-plated stainless steel define the

acceptance angles of incident radiation and are used to support the thin

aluminized mylar or kapton windows which confine the gas to the chamber.

Figure 3 shows a schematic design of the counter and Table 1 gives the

detector specifications for each flight.

The multi-anode proportional chambers described above are the result

of efforts by the Goddard Space Flight Center X-Ray Group to produce an

x-ray proportional counter which will 1) efficiently collect electrons

within a large gas volume, 2) reduce internal background to a minimum,

3) maintain sufficiently long gas stability in order to obtain good

energy resolution, 4) perform independent measurements of observed

radiation within one chamber, 5) be as compact in design as possible.

Each anode is enclosed by a square array of ground wires which defines

a distinct element of the chamber as shown in Figures 4 and 5. This

arrangement provides an electric field of sufficient strength so that

the electrons inside the gas reach the anode quickly and have path

lengths small enough to prevent the production of negative ions.
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Internal background reduction is accomplished by use of electronic

logic as follows:

1. A requirement is made so that one and only one of a group of

adjacent elements can show a valid signal at any one time.

2. All elements which are adjacent to the walls of the chamber are

grouped into a single output which is used in anticoincidence with the

rest of the chamber.

The above requirements prevent Compton electrons which are produced

in the walls of the counter and which contribute most of the internal

background from producing a valid x-ray event. The only wall area left

unprotected against such a process is the end walls of the counter

where the ground wires and anodes are attached. The detector has pur-

posely been constructed long and narrow in order to keep this end wall

area to a minimum.

Frequently the gas in proportional counters becomes contaminated

with impurities from the walls of the counter or from small gas leaks.

This contamination in turn leads to gain changes in the charge output

from events occurring in the counter and finally to the degradation

of the energy resolution of the counter. To keep this contamination

to a minimum the technique of baking and evacuating the assembled chamber

at a temperature of about 800 F for approximately 24 hours is employed

before introducing gas into the chamber. Since the counters are con-

tained in a single chamber any gain shifts from the effects mentioned

above will show up in all layers thereby facilitating the use of

correction factors to the original calibrations.

The multilayered construction of the chambers (4 layers in the

xenon counter and 5 layers in the argon counter) permits each layer to
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be analyzed independently of the others. This arrangement gives con-

sistency measurements between layers as well as isolating higher energy

parts of the spectrum as one analyzes the deeper layers. Figure 6 shows

the quantum efficiencies of each layer of the detectors.

B. Collimation

Each of the detectors has its acceptance angle defined by a grid

of rectangular mechanical collimators which have a 1.80 FWHM response

in the width and a 7.10 FWHM response in the length of the collimator

face as shown in Figures 7 and 8. The collimators are made of stainless

steel tubing which are copper plated to prevent fluorescent radiation

from iron in the stainless steel. The effective solid angle subtended

by each collimator is 3.9x10- 3 steradians. Both collimators have their

look axes aligned to within 6 arc minutes. As an added protection

against charged particle effects, the sides of the detector were plated

with tin and the collimator side was covered with a thin layer of copper.

C. The Electronic Circuitry

Excluding the anticoincidence elements, the eight anodes in each

layer of the chamber are divided into two groups of four anodes each

such that adjacent elements never belong to the same group as shown in

Figure 4 (bottom). The four layered detector thus has eight distinct

groups plus an anticoincidence group all of which have separate high

voltage connections through load resistors and high voltage feedthroughs.

The three layered detector has six groups plus an anticoincidence group.

The outputs of each of the two groups of anodes from a given layer

pass through the primary windings of separate pulse transformers and are
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then summed at the input of a charge sensitive amplifier. A flow

diagram of the signal is shown in Figure 9. The separate pulse trans-

former outputs are later used in the logic circuits shown in Figure 10,

to reveal a coincidence between two or more groups in the chamber.

This condition causes an event to be rejected because of reasons dis-

cussed previously.

Each individual layer analog output then passes through its own

analog to digital conversion circuit (see Can'cro et alo, 1968) which

pulse height analyzes the signal and places it into one of 127 channels

if the upper and lower threshold energy requirements are met. A block

diagram of this logic is shown in Figure 10. In addition;

1. All events above lower threshold and below upper threshold

which have no coincidence among different layers are counted in scalar

II (see Figure 11).

2. Events in a given layer which have a coincidence among

adjacent elements are pulse height analyzed and counted in a mark bit.

3. All events exceeding upper threshold or which have coincidence

between layers are counted in scalar I.

4. All events from a given layer below lower threshold are

sampled layer by layer on a commutated basis and counted in scalar I'.

5. All rates in the anticoincidence elements are flagged when the

counting rate exceeds 103 counts/sec. (called Flag I) and 104 counts/sec.

(called Flag II).

D. The Telemetry Format

The data are transmitted in a pulse code modulation format at a

50.24 KHz bit rate. Digital data are retrieved in the form of frames
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consisting of 64 sixteen bit binary words repeated continuously. Word

one consists of a synch word and word 33 contains scalar I, scalar I',

Flag I, and Flag II information. The other 62 words in a frame each

contain pulse height analyzed x-ray events along with their layer

identification and a flag to indicate whether a mark bit event occurred.

Scalar II events are also contained in these 62 words. Figure 11 shows

the readout format and timing for each frame and word within a frame.

E. Energy Calibration

Several radioactive sources were used to provide calibration

points at detectable energies. These sources along with their decay

modes and photon energies are listed in Table 2. The "effective

energies" have been computed on the basis of a superposition of gaussian

curves for line energies in Table 2 where the energy separation of

various lines is too small to be resolved by the detectors.

In addition, several low energy calibration points were obtained

from characteristic lines produced by thick-target bremsstrahlung

(similar to the procedure described in Appendix B) with electrons inci-

dent on various target materials listed in Table 3. In order to minimize

absorption of these low energy photons, the region between the photon

source and the detector was evacuated. After subtraction of the con-

tinuum this procedure provided energy resolution data as well as

calibration points down to the lower threshold energy of the detectors.

The calibration procedure just described revealed several non-

linearities in the energy response of the system. A typical calibration

curve of the photon energy vs. pulse height channel number shown in

Figure 12 illustrates that for channel numbers smaller than 11 the
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response is non-linear. This behavior was verified by use of a variable

pulse height, pulse rate generator which revealed that most of the non-

linearity occurred in the analog to digital converter with the remainder

divided betweenthe various pre and post amplifier sections, There also

exists a slight distortion of the calibration curve when count rates on

the order of a few thousand counts/sec. are present. This phenomenon

is due to a baseline shift in the voltage of the analog signal when many

pulses overlap due to large count rates. *For count rates observed in

the flight experiments, however, this effect was negligible. The non-

linear calibration curve was incorporated into the analysis of each

channel of data.

Finally, an attempt was made to provide a continuous energy

calibration of the system using photons produced by thin-target brems-

strahlung with electrons incident on .l-mil aluminum targets. The

experimental spectrum agreed with the theoretical Kirkpatrick-Wiedmann

(1945), Motz and Placious (1958) cross sections at energies above 5 keV

but at lower.photon energies were in disagreement with predicted values.

A summary of this method of calibration is given in Appendix B.
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CHAPTER III

ANALYSIS OF DATA

A. Spectral Analysis Procedure 1

Sources for which sufficient statistics exist are spectrally

analyzed layer by layer by folding a theoretical model through the

response function of the detector and comparing the results with the data

using a chi square test described below for goodness of fit. The response

function is represented by the integral transforms

dn

)E= exp(-gw(E')Xw)[1 - exp(- g(E')Xg)]

co (E-E')E

J [1 - z P (E')] J(E') exp[- 2 ( IdE'
'o n

Z

n I ne,n'£' I (E')
a(E') r (27)

(27)

n'R' 2

+ 2 J P (E') J(E') exp [- (E + En, -E')

2

nZe nt I0 nX,n'' ' 2(E En '

n'£ t

a(E'-En ) /17

where J(E') = theoretical differential photon spectrum

Pn',£,(E') = fluorescence x-ray escape probability for a

transition from atomic levels n'V' to ne

a(E') = energy resolution of the detector

dn
(-g) = resulting differential spectrum at energy E

Mg(E') = absorption coefficient for the gas fill at energy E'
(gm/cm2 )
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w(E') = absorption coefficient for the detector window at

energy E'

Xw = thickness of window (cm2/gm)

Xg = thickness of gas layer (cm2/gm)

and the integration is performed over all energies E'. Since the

detector pulse height analyzes the x-rays into 127 channels, the

dn
differential spectrum (-) is then summed over the width of each energy

channel.

6E i
Ei+-T- dnd

N(Ei) = rAE
i

(E dE (28)

Ei- 2

where N(Ei) is the counts received in each energy channel of width AEi.

In practice, the computer evaluates equations 27 and 28 in small

enough increments so that the error in not going to a smaller increment

is less than 1%.

The response function of the detector in terms of equation 27

is described as follows with parameters listed in Table 3.

Window Attenuation. Radiation coming into the detector from a

source must pass through the interstellar medium and the detector window

which confines the gas. The absorption of photons in the window occurs

via the photoelectric effect and has an energy dependence proportional

to E 8 / 3 except for discontinuities at the absorption edges of the atoms.

The term exp(-gw(E')Xw) in equation 27 gives the number of photons

transmitted through the detector window and the layers of gas on top of

the layer being analyzed. Values for absorption coefficients were taken

from Storm and Israel (1967).
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Detector Efficiency. After passing through the detector window, the

main energy loss mechanism for kilovolt x-rays is the photoelectric effect.

The number of photons absorbed in such a process is given by

[1 - exp(-zg(E')Xg)] and represents the efficiency of the detector at

energy E'.

Fluorescent Escape Radiation. X-rays exceeding the energy of an

absorption edge of the counter gas can generate characteristic fluorescent

radiation which may escape from the counter. The probability P n,n''

for radiation traveling along the z axis and escaping from a rectangular

box detector with height z can be calculated from equation 29.

exp 
Pn ,n'%'(E

'
) = 4.B I exp [-~g(E')Zl ~g(E')fngnd,n , zdz

(29)

S exp [I-g(En,n,£,t)lrl] dx dy dQ

where B = J exp [-gg(E')zl]g(E') dx dy dz (30)

fn = fluorescent yield of atomic shell n

dx,dy,dz = differentials of the coordinates of the fluorescent

x-ray relative to the detector

Irl = distance of the wall of the counter to the point of

production of the fluorescent x-ray

gn,,n'£' = transition probability from atomic levels of n'£' to nI

End,n'I' = energy of fluorescent x-ray

dQ = solid angle of detector seen by escaping x-ray.

Equation 29 simplifies for the case of a semi-infinite counter to the

following form

(31)

PnZ,n, (E') = fngn,nll [1 -Ig(En ,n£ ) Zn(l + g(E') )]
gg(E') 99g(EnZ,n,£,)
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Equation 31 is valid for the K edge in the argon counter and the

L edges in the xenon counter since photons near the absorption edges

are almost totally absorbed. For the K edges of xenon this is not true,

but the efficiency of the gas at energies near the K absorption edge is

small and the effect of using equation 31 rather than 29 is approximately

the same.

Energy Resolution. When x-rays interact photoelectrically in a gas,

statistical fluctuations in the number of ion pairs produced are coupled

with fluctuations in the gas multiplication process as well as electron

collection efficiency. These factors contribute to a spread in pulse

height for a given event. In addition, electronic components generate

random noise which add to this spread. All of these factors can be

approximated by one expression which takes the form of a Gaussian curve.

R(E,E') = a(E') exp [-(E-E')2/a2(E')] .(32)

where a2(E' ) can be written in a power series expansion

a2 (E') = A + BE + CE2 + ....... (33)

In practice, all coefficients in equation 33 are small except for B at

energies greater than 2 keV.

Escape Due to Electron Path Lengths. If the path lengths of the

electrons which have been ionized are greater than the dimensions of a

single element in the chamber, some of the incident photon's energy will

be deposited in a neighboring element and will be anticoincidenced.

Since this affects the probability for absorption, a suitable correction

factor must be added to the efficiency of the gas. A relevant parameter

is the range of a particle in the absorbing medium (i.e., the distance
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a particle can travel before losing all its kinetic energy). For non-

relativistic particles the range is proportional to the kinetic energy

squared. The probability that an electron will escape from the element

can therefore be expressed as Pe = (1 - &E2 ) where a is an experimentally

determined coefficient listed in Table 4.

Fluorescent Radiation from Ambient Material. Just as fluorescent

radiation can be generated in the gas of the detector, it may also occur

as a result of photons interacting with any material which the counter

is made of. The principal contribution to this effect is the brass

mechanical collimators which contain copper and nickel which fluoresce

at energies 8.1 and 7.6 keV respectively. These probabilities incor-

porated in the second term of equation 27 are both energy and solid

angle dependent and have been experimentally determined using a diffuse

x-ray source produced by thick target bremsstrahlung (similar to the

proceeding described in Appendix B) with 80 keV electrons.

B. Spectral Analysis Procedure 2

Sources which have differential spectral data comparable to 3a

above background have been analyzed less rigorously than procedure 1.

First, equation 28 was evaluated for each layer in a detector using an

input spectral shape resembling the data and normalized to 1 photon per

energy channel. This gave approximate efficiencies for each energy

channel. Second, data from different layers in each counter were summed.

In the argon counter, all four layers were summed. In the xenon counter,

layer 1 was used from 2 to 9.3 keV, layers 1 + 2 were used from 9.3 to

11.0 keV, and all layers were used at energies greater than 11.0 keV

based on useable gas efficiency. Finally, data from both counters were
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summed using the appropriate layers and corrected to a true incident

flux by dividing by the sum of the efficiencies found in step 1. As an

example, consider data from an energy channel i from the first and

second layers of xenon and all four layers of argon. The corrected

spectrum is given by:

NT(Ei)
N(Ei) Eff=T(EJ) counts in ith energy bin (34)

where

NT(Ei) = Nx 1 (Ei) + NX 2 (Ei ) + NAl(Ei) + NA2(Ei) + NA3(Ei) +
(35)

NA4 (Ei)

EffT(Ei)= EffX1(Ei) + Effx2(Ei ) + EffAl(Ei) + EffA2 (Ei) +
(36)

EffA3 (Ei) + EffA4 (Ei)

The subscripts .in.the .summation-refer to individual layers of the

detectors. The resulting differential spectrum can then be compared

using a chi-square test described below to various spectral shapes and

equation 34, is reevaluated by an iterative procedure using the best fit

from the chi-square test and recalculated efficiencies.

C. The Chi-Square Test

In order to determine which spectral models were consistent with the

data, Pearson's (1900) Chi-Square test was used. This test uses the

fact that the quantity

k = (Fi-Ni) (

i=l Ti2

has approximately a X2 distribution with the number of degrees of freedom
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k
equal to the minimum number of channels i needed to determine i Ni

i=l = expected number of counts in the ith energy channel

where: Fi = expected number of counts in the ith energy channel

N
i

= observed number of counts in the ith energy channel

oi2 = variance of the expected counts in the ith energy channel

k = number of channels.

The values of j when related to the chi-square probability distribu-

tion for a given number of degrees of freedom express the probability

that upon repeating the experiment a larger value of g would be obtained.

This means that for values of j with very small or very large probabili-

ties the model can be rejected. The arbitrary criterion used to deter-

mine the range of acceptable spectral models was .1 & P S .9 where P

is the chi-square probability. Values of P for different degrees of

freedom are tabulated in Abramowitz and-Stegun (1964) and the IBM/360

Scientific Subroutine Package.

In general, the models require that the Fi's be a function of

several variables such as absorption coefficients, spectral indices,

and normalization constants. This requires the solution of a multi-

dimensional weighted least square fit where all parameters are simul-

taneously varied in order to obtain an absolute minimum chi-square.

The limits on the parameters are then defined by contours in the multi-

dimensional space.

We have chosen to restrict the number of independent parameters

by requiring that for a given spectral index the normalization constant

be determined by the total number of counts in the spectrum. In

addition, since the interstellar absorption is negligible above 5 keV,

best fits above 5 keV were used to determine the model to which an
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absorption parameter was later added. Thus, only one approximately

independent parameter was varied for each evaluation of chi-square.

The determination of the variance vi in the expected value Fi

requires an analysis of the error in the weighted least squares fit

prescribed by equation 37. In practice, however, a.2 is comparable to

the variance in the observed counting rate when there is a reasonable

2
fit to a model. Therefore, we choose i. equal to the variance in the

observed counts. In general, theevaluation of ai2 involves the

summing of errors from the total counts observed from a source and the

subtraction of background counts observed for a different length of

time. The general expression for oi2 is thus:

TI 2

.i NiN+(-) Bi (38)

where N
i
= observed total counts received in the ith energy channel

before background subtraction

T
1
= time spent collecting data N

i

Bi = observed total background counts received in the ith

energy channel

T
2
= time spent collecting data B

i

The assumptions on Ni for use in the above test are:

1. each and every count is placed into one and only one channel i

2. Ni should be large; a rule of thumb is that N
i
2 5

(especially if the number of degrees of freedom is $ 5).

In practice, energy channel widths are chosen so that at least

nine total counts were present in a particular channel before back-

ground subtraction. This requirement was chosen as being indicative
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of a 3W effect. Where the errors were large compared to the data after

background subtraction or where the net counts in a particular channel

were less than zero additional lumping of channels occurred following

a rule of thumb that the size of each bin in energy space was as large

or larger than the preceding bin on a logarithmic scale. This latter

procedure resulted in the error for each bin being approximately the

same.

D. Spatial Analysis of Data

As in the spectral case, a spatial model for a source can be folded

into the detector response function to give the expected counting rate

as a function of the look direction of the detector axis. The general

response function for a collimator is given by:

dn = f fI J(8, P, E) cos1(e-9') da dr2 dE (39)
E A 

where J(e, p, E) = intensity of the source as a function of coordinates

in some spherical reference system and as a function

of photon energy

da cosl(9-e')1= projected area ofithe detector on a plane

perpendicular to the direction 0

8 = angle of source in a spherical reference system

i' = look angle of detector axis in a spherical reference system

E = energy of the incident radiation

dQ = solid angle subtended by the area da cosl(0e-')I

For the special case of radiation coming into a rectangular

collimator with dimensions w by d and height h from a spherical
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coordinate system where w is parallel to polar latitude (b) and d is

parallel to azimuthal longitude (a) equation 39 can be written

dn b 1Imxb'*1 wtan(b-b')I
dE= J' 'max J(b, £, E) cos (b-b') wd [1 - tan(1

dE b'-0 lmax max
(40)

ma x [1 tank £ - £') ]]J+ 02 [1- 2 cos(b) db d(
·- max tan( max)

where 01 tan-1 h
max d

82mX = tan 1 w
max d

Using equation 37 we can perform chi-square tests in a fashion similar

to the spectral analysis described above in order to check the

acceptability of spatial models (e.g. Figure 13) with the data. In this

case, N
i

in equation 37 becomes the number of counts observed in a

spatial interval i, Fi is the expected number of counts from integra-

ting equation 40 over a spatial interval i and aii = Fi.
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CHAPTER IV

THE FLIGHT EXPERIMENTS

Table 1 lists relevant information concerning flights 13.07 and

13.08. Aspect information was gathered from star field photographs

using two 35 mm. Nikon F cameras operated asynchronously with 2.6 sec

exposures so that no two frames coincided. The positional error from

such analysis is estimated to be about .20°.

Pre and post flight energy calibration was obtained with an

Fe5 5 (5.9 keV) source mounted on the inside of mechanical doors which

covered the detectors before and after the flight targets were observed.

These sources were used to verify the results of earlier ground based

calibrations.

The extragalactic diffuse background spectrum obtained from 61 sec.

of data from flight 13.08 with the detectors pointing at galactic

latitudes greater than 3.50 is presented in Figure 14.

Internal background information was obtained from flight 13.08

with 20 sec. of data collected while the detectors were pointed earth-

ward and an additional 20 seconds while the doors were closed and

atmospheric absorption above 2 keV was negligible. The latter measure-

ments were used to determine internal background above about 10 keV

since the earth's atmosphere itself is a source of hard x-rays.

A summary of results is presented in Table 5.
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CHAPTER V

RESULTS

A. Flight 13.07

The aspect solution for the portion of the flight in which the

Cygnus sources were scanned is shown in Figure 15 and a counting rate

profile is presented in Figure 16. Energy spectra for Cygnus X-l,

CygnusX-2, and CygnusX-3 were obtained as well as upper limits for

CygnusX-4 and CygnusX-5 (Cygnus Loop). The spectra cover an energy

range of 2-15 keV from the top layer of each detector while lower layers

provided additional information in the 15-20 keV band. These usable

energy ranges were determined after the discovery of leaky linear gates

in the analog circuitry which caused spectral distortion of energy

channels above 15 keV triggered by low energy events. Since few low

energy events penetrate to the lower layers of the detectors, these

layers were not distorted above 15 keV to any great extent and wereh

used for analyzing spectra above this energy.

Background subtraction was obtained from approximately 20 seconds

of data gathered when the detectors were looking at the Cygnus Loop

which was not observed above 2 keV.

Limits on the spectral parameters are based on the 90% confidence

limits (unless otherwise noted) of the chi square distribution described

in Chapter III. In addition, all spectra were examined for line

emission with negative results. The upper limits to iron line emission
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in a 1 keV band centired at 7.0 keV for all sources was about 20% of

the continuum. This result is in general agreement with line emission

from an"optically thid'hot plasma with universal abundances as shown

in Figure 17. Luminosities are given for sources in the energy range

2-15 keV unless otherwise noted.

Cygnus X-l. Cygnus X-1 was observed for approximately six seconds

during the flight. After background subtraction approximately 1900 net

counts occurred in the 2-15 keV range in the first layer of the xenon

detector and approximately 1300 net counts were collected from the same

energy range in the first layer of the argon detector. This represents

a source to background strength of 20:1 in the xenon first layer and

10:1 in the argon first layer. The spectra were then compared with

exponential, power law, blackbody, and'b"optically thir'isothermal plasma

models by use of the chi square test discussed previously. Only a

power law gave an acceptable fit. The spectrum is of the form:

dN= 7.4 +2.4 E-(2.6 +.3 ) photons (41)
dE -1.3 cm2 -sec-keV

as shown in Figure 18. We are reasonably confident that this soft

new spectrum (in contrast to Gorenstein et al., 1967) does not arise

from a systematic effect in our experiment, since both the xenon and

argon filled detectors (as well as the argon layers individually) are

in agreement with this spectrum. The UHURU satellite has recently

analyzed spectra from Cygnus X-1 with indices greater than 2 (Giacconi,

personal conmmunication, 1971), and balloon measurements in September

1970 (Matteson and Peterson, personal communication, 1970) are con-

sistent with the softer spectrum of Cygnus X-1 up to 100 keV (see

Figure 19).
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During the time of observation Cygnus X-1 showed temporal varia-

tions on time scales of 100 milliseconds and greater (Holt et al.,1971)

while the UHURU satellite has seen variations on smaller time scales

(cf. Oda et al., 1971). The variability of Cygnus X-1 in strength and

spectral shape are additional evidence for the non-thermal nature of the

object.

Although the spectra of Cygnus X-1 was consistent with no inter-

stellar absorption, the Brown and Gould (1970) results were tested in

conjunction with the best power law fit above 5 keV where interstellar

absorption is small. We obtain an upper limit of 5x102 1 H atoms/cm2

in the line of sight. It is interesting to note, however, that a

minimum chi square was reached with 1.2xlO21 H atoms/cm2 which is in

close agreement with 1.6x102 1 H atoms/cm2 calculated by Gursky et al.

(1971),

In order to compare the distance of Cygnus X-1 with other authors

(c.f. Ilovaisky, 1970; Gursky, 1971) the temperature brightness profiles

of Muller and Westerhout (1957) from 21 cm. neutral hydrogen emission

were used in conjunction with the Schmidt (1965) model of the rotating

galaxy (see Appendix A), to give 5x1021 H atoms/cm2 out to a distance

of about 7 kpc in the direction of Cygnus X-1.- These numbers are

consistent with Lindblad's (1965) optical depth profiles for the same

region.

Using an exponential model of gas density versus height above the

galactic plane discussed in Appendix A, an upper limit of 7 kpc is found

for the distance to Cygnus X-1 while our best fit gives a distance of

about 1 kpc which is in good agreement with the distance found by Gursky

et al. (1971). If Gaussian distribution of hydrogen density versus
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height above the galactic plane is used (see Appendix A) the best fit

gives about .7 kpc.

Assuming the above distances to Cygnus X-1 we calculate the x-ray

luminosity at the source in the band 2-15 keV to be 4.9x1037 ergs/sec.

for 7 kpc, and l.OxlO3 6 ergs/sec. for 1 kpc.

Cygnus X-20 In four seconds approximately 750 net counts were

collected in the xenon first layer 2-15 keV range after subtracting

background in a fashion similar to that for Cygnus X-1. The corre-

sponding number for the argon first layer was approximately 450 net

counts.

The energy spectrum of this source was consistent with an expo-

nential fit given by:

dN = 1.4 +.3 exp(-E/4.5+.7)/E photons (42)

TdE cm2 -sec-keV

as shown in Figure 20.

In addition, a blackbody model and an'bptically thid'hot plasma

model (see Appendix A) gave slightly less acceptable fits than the

exponential. The best temperatures for these fits are 1.3 keV and

2.8 keV respectively.

Finally, a power law fit could not be reconciled at all with our

spectrum. Both counters agreed in the results listed above and data

from the second layer in each counter indicates virtually no counts

above 15 keV which agrees well with the thermal spectrum obtained below

15 keV found by us as well as other observers (c.f. Gorenstein et al.,

1967) as shown in Figure 21.

Although the above fits are consistent with no interstellar

absorption, the Brown and Gould (1970) results give an upper limit of
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2.1x102 2 H atoms/cm2 with a temperature of 4.0 keV from an exponential

model normalized to data above 5 keV. The minimum chi square with

absorption included was obtained with 5x102 1 H atoms/cm2 while 21 cm.

emission from the Muller and Westerhout (1957) profiles indicate

approximately 1.3x102 1 H atoms/cm2 out to a distance of 5 kpc using

the Schmidt (1965) model.

Since optical measurements by Kraft and Demoulin (1967) indicate

that Cygnus X-2 is at a distance of about 600 parsecs the excess

absorption observed in the x-ray spectrum could be due to self absorp-

tion in the source.

If the best absorption fit is used to evaluate the optical depth

of the source at a given energy, then information on the scale size

and electron density of the emitting region can be obtained. At 2 keV

the optical depth using the best fit with interstellar absorption is .4.

If most of this result is due to absorption within the source then for

electron densities less than about 1024 cm
-
3 the photoelectric effect in

the K shell of neon and magnesium hydrogenic ions is the major source

of photon absorption at 2 keV in a hot plasma with universal abundances.

Using the ionization equilibria of Tucker (1966) at a plasma temperature

of 4 keV and the K shell photoelectric absorption cross section given

by Heitler (1954), the photoelectric opacity at 2 keV is:

abs 10 2 5 (43)abs -

where NX = electron number density.

Since the photons are electron scattered as they escape, the

Thompson cross section can be used for 2 keV photons to give the

electron scattering opacity.
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Kesc = 6.7 x 1025 NX (44)

Comparing equations 43 and 44 we see that photons are electron

scattered about 7 times before being photoelectrically absorbed. This

result allows neutron diffusion theory to be used (c.f. Davison, 1957)

to calculate an optical depth given by:

T = (3 Kabs Kesc)/2 RX (45)

where RX is the scale size of the source. At 2 keV and an optical depth

of .4 equation 45 gives

NX 1024 RX-1 (46)

In order to obtain a second equation that may be solved simultaneously

with equation 46, we use the bremsstrahlung emission formula (see

equation 69 Appendix A) to get

<NX 2> RX3
2 1/2 Pi I (47)

where I = intensity of radiation received from the source

in ergs/cm2-sec-erg

d = distance to the source in cm.

T = temperature of the source in °K

Using a distance of 600 parsecs and a temperature of about 50 million

degrees gives

2 3 1058
<NX > RX 10 (48)
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Solving equations 46 and 48 we obtain

RX = 1010 cm. as a lower limit to the size of the emitting region

and NX = 1014 cm-3 as an upper limit to the electron density.

The luminosity of Cygnus X-2 at the source assuming a distance of

600 parsecs is 2.5 x 1035 ergs/sec.

Cygnus X-3. Cygnus X-3 was observed for approximately 4 seconds

with approximately 800 net counts less background in the 2-15 keV range.

from the xenon 1st layer and 480 counts less background from the argon

1st layer.

The spectrum was tested with both thermal and power law models,

all of which gave unacceptable X2 fits using the 90% confidence levels.

Furthermore, the data have high enough statistical significance to

exclude a power law or thermal continuum absorbed by cold interstellar

matter using the Bell and Kingston (1967) or Brown and Gould (1970)

results.

The minimum chi square for any model used was:

dN =-39 hotons
dE = 87 f(E, Eo) E 

-3 '9
photons (49)
cm -sec-keV

where f(E, Eo) denotes the Brown and Gould (1970) interstellar opacity

at a characteristic energy of 4.0 keV which corresponds to 1.6 x 1023

H atoms/cm2 in the line of sight.

Figure 22 shows the spectrum of Cygnus X-3 including a feature at

approximately 3.5 keV which is possibly due to absorption. The only

element with an absorption edge near this energy having a significant

universal abundance is argon. If we increase the universal abundance

of argon to 1019 argon atoms/cm2 in the line of sight and keep the

other parameters in equation 49 except the normalization constant fixed,
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the 90% confidence level in the chi square test is barely reached.

Since the argon counter itself has an absorption edge at 3.2 keV,

data from this counter gave little additional information about such an

absorption feature. Additional data must be gathered to determine if

the feature is statistically significant.

Above 15 keV, data from the lower layers of both counters indicate

a hardening of the spectra which is consistent with balloon results

(see Figure 23).

Cygnus X-4. This source, reported by Giacconi et al. (1967b) at a

strength of approximately .19 keV cm 2sec 1 in the energy range 2-5 keV,

was not detected above a level of .04 keV cm -2sec7l in the same energy

range. This upper limit represents 3a statistics on the counting rate

at the time we passed over the reported position (Giacconi et al. 1971)

of Cygnus X-4, and also is approximately 1% of our observed intensity

for Cygnus X-1.

Cygnus X-5. We did not observe the Cygnus Loop above 10-2 photons

cm' 2 sec-l above 2 keV. This upper limit represents 3a statistics

assuming a source of uniform surface brightness coincident with radio

supernova remnant. This result implies agreement with a thermal model

for the sources (c.f. Tucker 1971) since the power law fit of Grader

et al. (1970) would have been seen at about an order of magnitude above

our upper limit while their thermal fit corresponding to a temperature

of 400 eV would be below our threshold of detectability.
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B. Flight 13.08

Spatial Profile. Data from four successive scans across the galactic

plane along the 1.8 degree collimation direction at longitude 61.8°

were folded into 1 degree bins in galactic latitude shown in Figure 24.

These data come from a portion of the galactic plane where no discrete

sources were observed with 99% confidence for a flux of .03 photons

(cm2-sec) - above 2 keV anywhere in the region 450° 5 £ 70° or

.02 photons (cm 2sec)-
1

above 2 keV for a source at a given position in

the same region based on 3a statistics on the estimated background from

flight 13.07. In addition, there were two measurements of the diffuse

cosmic background made at galactic latitudes Ibl 2 8 degrees which

were included in the profile.

Separation of the data into one degree bins in galactic latitude

was chosen on the basis of a trial and error procedure designed to bring

out maximum structure in the profile without being statistics limited.

A chi square test using'the mean counting rate as a model showed that

the data are inconsistent with statistical fluctuations to a confidence

level greater than 99%. A least squares fit to a two parameter point

source model of the form:

Ni = A + Bfi (50)

where N i = total counts in the ith bin

A = diffuse non-disk background counts in the ith bin

B = total observed source counts

fi = fraction of total counts from a point source expected

in the ith bin
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showed that a point source at b = 00 could be excluded to a X2 confidence

level of 92% while a point source at any other latitude gives a poorer

fit. This result agrees with data obtained in flight 13.07 where the

same portion of galactic plane was examiped with the 1.8° collimator

scanning in galactic longitude. Figure 25 shows the counting rate

profile of flight 13.08,using the same data included in the spatial

profile in Figure 24. At longitudes from about 530 - 620 our detectors

were pointed at about b = -. 5° and counting rates were at least 20 per-

cent larger than the peak counting rate in Figure 24. This gives us

further reason to believe that a single discrete source is not the

entire cause of the effect we observe.

Recently, the UHURU satellite has detected a discrete variable

x-ray source at I = 68.45° , b = 1.68° with a maximum strength of about

12% of Cygnus X-2 (cf. Giacconi 1971). Although we would have seen

such a source in flight 13.07 it is possible that this variable-source

might contribute to our current result. A two parameter least squares

fit of the form given by equation 50 to a point source at the position

and maximum strength reported by UHURU can be excluded to a X2 confidence

level greater than 9974 however, we found that a superposition of a

diffuse disk model (discussed below) and a discrete source at the

position and strength observed by UHURU attributes 4 counts/sec to the

b = 1-2 degree bin of Figure 23.

With regard to possible x-ray emission from an extended object seen

by Katgert (1969) at 21 cm wavelengths, we can rule out any major

contribution to our effect from this source on the basis that flight

13.07 would have observed this object at almost the same sensitivity as

flight 13.08. Since the object is believed to be the remnant of multiple
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supernova explosions and is approximately 106 years in age, it seems

likely that the hard x-ray emission has long since disappeared.

If the data are due to a diffuse galactic emission, then the spatial

profile in Figure 24 can be fitted to determine the angular size of

the model. A linearized two dimensional chi square test to a uniform

disk model (see Figure 2) was made for models with angular thickness

(eg) ranging up to 80. The results in Figure 26 show that a line

source could barely be excluded at the 90% confidence level while disks

with 9g > 7° can be excluded with confidence levels > 90%. It is

interesting to note that there exists a broad minimum in Figure 26 which

correlates well with the angular thickness of theHI disk at galactic

longitude 61.80 shown in Figure 27. For eg 2 degrees an intensity

of 2.9 photons (cm2-sec-ster)
-
l over a 2-10 keV band is obtained when

data collected from 3.50° b s 8° are subtracted from data where

b s 3.50 and renormalized to the count rate at b = 00° .

Spectra. The galactic disk energy spectrum was constructed from

four successive scans across the plane by subtracting data where

jIb > 3.5° from data where Ibl 5 3.5° a dividing point chosen on the

basis of the FWHM response of our collimators to a disk model with

8g " 20 as shown in Figure 24b. The data were then renormalized as

discussed above. In addition, 12 seconds of data from longitudes

530 to 61.80 and latitude -.5° were included since no discrete sources

were found in this region from flight 13.07 or UHURU results. The total

net counts from both counters (approximately 400 in the energy range

2-30 keV) were grouped into five energy bins of approximately equal

logarithmic size with the third bin purposely center at about 7.1 keV
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corresponding to the K edge of iron. The spectrum was then analyzed

according to spectral analysis procedure 2 and is present in Figure 28.

We note that the spectrum exhibits a lack of counts in the energy bin

6 to 9.3 keV. This feature occurs at energies which include both the

Ko emission and K absorption edge of iron. Above 12 keV the galactic

excess became less than Ic above background.

The data were then checked for spectral shape by comparing them with

a uniformly emitting disk model described as follows.

NH r 2Ib = 4 ~ q e -rdr + IB e-4NH photons(cm -sec-kev-ster) (51)

o nH

where Ib = galactic disk spectrum at galactic latitude b

IB = isotropic extragalactic background spectrum

E1.4 photons
cm2-sec-ster-keV

q = photon source function (cm3-sec-keV)

nH = interstellar hydrogen density (H atoms/cm3)

= absorption coefficient due to interstellar gas

NH = columnar density (H atoms/cm 2 ) of the emitting region along

the line of sight given by NH = constant for Ibl - eg/2

and NH a csc Ibi > eg/2

The first term on the right in equation 51 represents the disk which

is attenuated by cold interstellar matter and the second term on the right

in equation 51 represents the attenuated extragalactic diffuse background.

A chi square test was made using equation 37 and the data to deter-

mine acceptable spectral indices and temperatures for several choices

of NH, assuming q to be in the form of a power law (q = K(hv) ) or an

exponential (q = K exp(-hv/kT)/hv).
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From the 21 cm. data compiled by Daltabuit (1970) shown in Figure

27 and observations of Burton (1970), values of NH were to lie between

1-3x102 2 H atoms/cm2 at 61.8° and b = 0° . Brown and Gould (1970)

absorption coefficients were used with the addition of iron absorption

whose abundance was determined from Nussbaumer and Swings (1970) as

3.1x10 5 that of hydrogen.

The range of values for (q) which give acceptable X2 fits for a

power law are

+3.8 -21 -(2.8+.5) photons
q (8.5_1.9) x 10 E cm

3
-sec-keV (52)

The corresponding fits to an exponential form are

q (5.6 ) x 10-21 exp(- )/E photons (53)
-1.9 2.1 .8 . cm -sec-keV

The above values were computed on the basis of a disk with eg = 20 and an

interstellar hydrogen density of .7 H atoms/cm3 . Approximately the same

goodness of fit was achieved for either model. We can also set a 3a

upper limit of .3 photons (cm2-sec-ster)- to any emission within a 1.5

keV bin centered at 7 keV (e.g. iron line) from the galactic disk at

latitudes Ibl s 3.5° . Such narrow band emission could be produced by

charge exchange between stopping energetic iron nuclei and neutral H

atoms, resulting in ultimate capture of electrons to the K shell (c.f.

Silk and Steigman, 1969). If we assume that every iron atom now in

the interstellar gas emitted two K x-rays (c.f. Ramaty et al., 1971) within

the galactic lifetime, then the time averaged line intensity would be

comparable tothis upper limit.
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Inverse Compton Model. The range of acceptable power law indices

indicates that inverse Compton produced x-rays are not the dominant effect

in our galactic disk spectrum. This applies to the electron spectrum

given by Anand et al. (1968) for electron energies in the range of about

5 to 200 GeV which give a photon spectral index of 1.8 as well as the

low frequency radio synchrotron (< 102MHz) results of Alexander et al.

(1969) as interpreted by Goldstein et al. (1970) for electron energies

200 MeV to several GeV which give a photon spectral index of 1.4.

We can, however, calculate upper limits to the fraction of our

effect due to 2.70 K blackbody photons undergoing Compton collisions.

Using the power law spectrum given by Anand et al. (1968) we find,

using equation 10 in Chapter 1, that the photon spectrum is given by

I(hv) = 9.0 x 10 26T38 (h)-8R photons(54)
cm -sec-ster-keV

where T = blackbody photon temperature in °K.

hv = photon energy in keV

R = emitting region in cm. along the line of sight

Using T = 2.70K and R = 17 kpc equation 54 gives I(hv) = .01 - .003

photons at 5 and 10 keV respectively which is 6% and 9% of the

cm2 -sec-ster-keV

flux given by our hardest acceptable power law fit at these energies.

The Goldstein et al. (1970) electron spectrum produces a photon spectrum

given by

-26 34 -14 photons
I(hv) A 7.1 x 102 6 T3 4 (h)- 4 R sesterkeV (55)cm -sec-ster-keV

and using the same analysis as above we find that the fraction of our
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results at 5 and 10 keV is 6% and 11% respectively. In either case

the predicted flux is small enough so that the 3a upper limit to the

data in our energy channel 9 to 17 keV requires an energy density (p)

of about 7eV/cm3 in microwave radiation after removing the temperature

dependence on p and assuming a temperature of 2.7°K. This upper limit

is much larger than the 4.3 eV/cm3 upper limit obtained by Hudson et al.

(1971).

-Synchrotron Emission Mode-l. Another possible production mechanism

for the observed galactic excess is synchrotron emission from ultra-

relativistic electrons radiating in the interstellar magnetic field

(Freitas Pacheco, 1970). The electron energies required to produce

2-30 keV x-rays inan interstellar magnetic field of 3x10- 6 gauss range

from about 2-7 x 105 GeV. At these energies we extrapolate from obser-

vations at lower electron energies given by choosing a spectral index

-2.6
of 2.6 to give an electron spectrum of Ie(E) = 63.1 E electrons

(m2-sec-ster-GeV)-
1
above 103 GeV. This corresponds to a photon spectrum

of

I(hv) = 3.9 x 10-22 R(hv)- 1' 8 photons (56)
cm -sec-ster-keV

in a field of 3 u gauss and yields about 8 times the flux of our hardest

power law fit at 10 keV using 17 kpc for R.

If we assume, however, that the electrons are uniformly produced in

time and space then a break of one unit in the electron spectrum could be

expected at an energy corresponding to the electron confinement time

in the galaxy. Assuming a lifetime of about 106 years puts the break at

about 103 GeV. The resulting synchrotron flux using the analysis above

is then consistent with our spectral index of 2.3 but gives only 3% of



54

the observed flux. If we choose the electron energy at which the break

must occur in order to match our data we find that this energy is about

6 x 104 GeV corresponding to an electron lifetime of about 104 years in

a field of 3g gauss.

Based on an estimate of a supernova rate of 1 per 100 years in the

galaxy,only about 10-2 supernovae would have occurred on the average in

the direction of our observation in 104 years. It appears then that a

uniform supply of electrons is not forthcoming from such sources.

Upper limits to electron fluxes from air shower measurements given

by Kamata et al. (1968) at energies of about 1013 eV also yield small

synchrotron fluxes which are about an order of magnitude below our results.

Suprathermal Proton Model. If a population of non-relativistic

protons were responsible for the observed galactic excess then equation

21 allows us to calculate the ionization rate in the interstellar

medium. Using equation 18 as the photon source function for non-rela-

tivistic bremsstrahlung due to a power law spectrum of particles, a

transformation to the proton rest frame allows one to calculate the

radiation from such a process. With this transformation equation 18

becomes

(hv)q = (8 a UT Mc2 ) f(F)n A(- hv)
-

1 keV (57)

where a = fine structure constant

aT = Thompson cross section

M hv
f(F) is defined in equation 19 with x = m E

mE

M = proton rest mass

m = electron rest mass

n = number density of hydrogen plus electrons
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A = normalization constant for the differential energy spectrum

of protons

The integral energy loss function for all suprathermal protons above

energy Eo = (M) hv ° is

Q(Eo) = 4rr J AE-r dE dE (58)
J* dx

where 1 dE 1 dE 1/2 dEwhere d ( )d (59)dx Tc dt 2E dt

from Hayakawa and Kitao (1956).

dE = 1.46 x 10-12 (n + 4ne)E0'3 MeV (60)
dt H e nucleon-sec

The ionization rate is given by

Q = Q(Eo) (61)

nH qo

where qo = average energy loss per ionization = 36 eV for hydrogen

(Dalgarno & Griffing, 1958). Combining equations 52, 57, 58, 59, and

60, equation 61 becomes

4nT cnH (hvo) (hv) q (sec-H atom)
-1=-q (sec-H atom)- (62)

NH(nH + ne) (r-.2)

where c = 1.14 x 10+7

ne = number density of electrons

and 4 ne was neglected in equation 60 because the energy loss depends

only on the hydrogen density.

Using equation 52 and 62 we find that for hv
o

= 2 keV

= (1-7) x 10 (sec-H atom) with the limits defined by the limits

in equation 52.

For the exponential spectrum given by equation 53 a photon source
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function corresponding to equation 57 was derived assuming mono-energetic

photons of energy kT and was used to evaluate C. The result was

C = 8x1014(sec-H atom)- .

In fact, 8x10-14(sec-H atom)
-

1 represents a lower limit to the

ionization rate because an exponential fit to our data shows that the

photon energy spectra turns over at about 2 keV or slightly higher than

our detector threshold. This means that the ionization is due to

protons of energy Eo b (M)hvo where hvo t 2 keV, allowing us to use

2 keV as the lower energy limit in equation 62 without seriously under-

estimating the ionization contribution from protons with energies less

than that corresponding to hv
o
= 2 keV. Since the ratio of bremsstrahlung

to collision losses in the interstellar hydrogen gas is a function of

particle velocity, independent of charge, the above results are the sane

for all cosmic ray particles with velocities equal to the protons

discussed here.

Transition Radiation. Johansson (1971) has suggested that transition

radiation produced during the traversal of relativistic charged particles

through interstellar grains could be an important source of cosmic x-rays.

Ramaty and Bleach (1972) have investigated this proposition in light of

the known theory of transition radiation (Garibyan, 1960; Bass and

Yakovenko, 1965), and the astrophysical information on interstellar

grains, soft x-rays, and low energy cosmic rays with the conclusion that

for grain sizes on the order of 10- 5 cm. the maximum energy at which

appreciable radiation occurs is about 150 eV. Since the maximum energy

at which radiation is produced is directly proportional to the size of

the grain it appears that x-rays in the kilovolt range are not produced

by this mechanism unless grain sizes are much larger. Even if one allows
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for large grain sizes the energy density in cosmic rays required to

produce the observed galactic excess seen by Bunner et al. (1971)

(which is 16 times larger at 260 eV than our photon source function

predicts using the steepest power law fit) is prohibitively large.

Unresolved Sources. Using the model of Ryter (1970) outlined in

Chapter I, we can determine the distance beyond which unresolved sources

exist in the disk. An average of Ryter's apparent flux per radian from

observed x-ray sources in the region 1200° 9 X 30° shows that our

observed galactic excess is only about 2% of this flux. According to

Figure 2 in Ryter (1970) the distance beyond which unresolved sources

lie is about .8 of the extent of the galaxy in our direction of obser-

vation. If all x-ray objects seen by UHURU in the 1971 catalog

(Giacconi et ai., 1971) in the longitude range 30° • £ S 1300 and

Ibl x 150 are used (excluding the strong source Cygnus X-1) to construct

a FWHM thickness of the disk assuming absolute value in galactic latitude

for source positions, then our detector would have observed a disk with

a FWHM of > 140 in resolved sources. If unresolved sources of this type

formed the basis for the Ryter model then this size for an unresolved

disk component would be inconsistent with our spatial profile.

If we assume that a new class of low luminosity x-rays sources exist

such that there are enough of them to justify the use of the volume

emissivity q found above, then the distance beyond which unresolved

sources of a single luminosity lie can then be calculated as follows:

Let: 2 RD = diameter of the disk

2Ro = thickness of the disk

R
s

= distance beyond which unresolved sources lie

L = luminosity of one source (ergs/sec)



I =

n =

N =

NT

q =

Providing that

threshold sensitivity of the detector (ergs/cm2-sec)

volume density of sources

number of observed sources of luminosity L

total number of sources of luminosity L in the galaxy

volume emissivity of the disk (ergs/cm3-sec)

R
s
s Ro we have the following relations

(63)

4 3
N =n 3 Rs (64)

L 4 n Rs2I

NT = 2 T (RD)2 Ron

Equation

we find

(65)

(66)

64 is valid as long as Rs R . Combining the above equations
s O

Rs q(
N = 31 (67)

Using the q found from our best power law fit to the galactic

spectrum, R
s
= R

o
from our best fit to the profile in Figure 24 and

I = threshold sensitivity of the UHURU satellite - 5xl0-llergs/cm 2-sec.

we find 20 5 N s 30 depending on the value of RD(10 S RD(kpc) S 17)

which was used to find Ro .

Based on the sky survey of UHURU,(Giacconi et al. (1971))we find

about 37 sources at IbI > 150 which includes 20 objects tentatively

identified with extragalactic objects of which a dozen seem to be fairly

positive identifications. This means that some 20-35 sources could be

galactic if an isotropic distribution is assumed. Currently this number

is in agreement with our prediction of 20 to 30 resolvable galactic

sources of one low luminosity class on the order of 1032 ergs/sec.
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CHAPTER VI

DISCUSSION

A. Discrete Sources

Cygnus X-1. Cygnus X-1 appears to be a compact non-thermal

emitter with temporal variations in intensity and spectral shape ranging

from hundreds of milliseconds to about 1 year over the x-ray band 2-100

keV. At the present time, there is little evidence for suggesting cor-

relations between temporal variatidns at photon energies above 20 keV

with softer x-ray photons (c.f. Matteson, 1971), implying that dif-

ferent regions in the source produce photons of different energies or

that emission mechanisms may vary within the source. Matteson (1971)

has also investigated several models of x-ray emission from Cygnus X-1.

These include the eclipsing binary star model suggested by Dolan (1970,

1971), the thermal bremsstrahlung model proposed by Sartori and

Morrison (1967), the synchrotron model proposed by Manley and Olbert

(1969), and the stellar accretion model suggested by Prendergast and

Burbidge (1968). None of the above models are capable of explaining

all the x-ray observations; however, the Dolan (1970, 1971) model sug-

gests a collapsed stellar object as one component of the binary system

while the Manley and Olbert (1969) model extrapolated to radio frequencies

using pre-1970 data in the 1-10 keV x-ray band agrees with the

Hjellming and Wade (1971) radio flux at 2695 MHz. The optical flux

59
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predicted using the above extrapolation corresponds to about a 15th

magnitude object. Bolton (1972) and Hjellming and Wade (1972) have

concluded that the variable (- 9th magnitude) star HDE 226868 is

closely coincident to the radio source position, however, a 15th magni-

tude red star also lies 'ithin the x-ray error box (Giacconi et al.,

1971). The limits (1-7 kpc) for the distance to Cygnus X-1 make this

source the most powerful of the discrete Cygnus X-ray emitters.

Cygnus X-2. Cygnus X-2 is believed to be a binary star system at

a distance of about 600 parsecs radiating via thermal emission. Our

observations are consistent with this interpretation in that no rapid

temporal variations of the type observed from Cygnus X-1 were seen, and

our calculated density of electrons (- 101 4cm
-
3 ) and size (- 1010 cm.)

of Cygnus X-2 would indicate a stellar-like object. In the 2-20 keV

range a source temperature of kT=4.5 keV is found which, when extrapo-

lated to the optical band,is capable of accounting for only 25% of the

observed flux (Cathey and Hayes, 1968) suggesting different emission

components for the two regimes. At energies above 20 keV upper limits

to the flux (Webber and Reinert (1970), Overbeck and Tananbaum (1968 a,

b) indicate a variable high energy component may be present in the

spectrum.

Cygnus X-3. Cygnus X-3 is a puzzling phenomena at this time.

First, it cannot be exactly like Cygnus X-2 because it has been ob-

served at energies greater than 30 keV (Matteson and Peterson, personal

communication, 1970) and is observed to be considerably harder than

thermal above about 10 keV in our experiment as well. Second, there
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are no rapid temporal fluctuations as in the case of Cygnus X-1. Third,

the spectrum is different from the other two sources. Whether this

arises because of self-absorption in the source or by absorption from

cold interstellar matter is unknown at present. Radio observations by

Wendker (1970) of the Cy'gnus-X complex show the source G 80.0+0.8 (with

an angular diameter of 16 arc minutes) to lie within the x-ray error

box given by Giacconi et al. (1971). One possibility is that Cygnus X-3

is the source of excitation for such an object.

Cygnus X-4. Our upper limit to the flux of Cygnus X-4 is con-

sistent with observations by Giacconi et al. (1967b) indicating that

this object emits only soft x-rays.

The Cygnus Loop. Our upper limit to the flux from the Cygnus Loop

indicates -that an extended soft thermal source associated with the

supernova remnant is an adequate representation.

A.S.E. 1954+31. This object should have been observable at a

strength of approximately 20% of the maximum reported from UHURU but

was not seen in our September 1970 experiment. It is possible that

this variable source was observed in our August 1971 flight.

B. The Galactic Disk

The excess of 2-30 keV x-rays observed at longitude 61.80 in the

galactic plane enables us to place restrictions on the size and source

mechanisms if the observed effect is assumed to be the result of a

diffuse galactic emission.
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With regard to the angular size we can say that disks thicker than

about 7 degrees (corresponding to about 1 kpc based on 10 kpc in the

line of sight) are improbable and particle or stellar populations with

thicknesses larger than this do not contribute significantly to our

observations. Furthermdre, the x-ray excess appears to lie symetri-

cally on either side of the galactic plane (to within statistics)

indicating a somewhat uniform effect. For these reasons a disk shaped

model shown in Figure 2 was chosen for the geometry which contained the

emission with the best fit to such a disk being about 20 in angular'

thickness.

Inverse Compton radiation proved unsuccessful in explaining our

results. Our acceptable spectral indices are incompatible with either

the Anand et al. (1968) results for electron energies between 5 and

200 GeV or the Alexander et al. (1969); Goldstein et al. (1970) results

for electron energies from about 200 MeV to several GeV. Secondly,

the 2.70 K blackbody radiation is capable of accounting for only a few

percent of our observed spectrum with a 35 upper limit of about 7 ev/cm3

as the energy density in the microwave region.

Synchrotron losses from galactic electrons in a magnetic field of

a few microgauss could explain the observed photon flux if the inter-

stellar electron spectrum observed at several hundred GeV is extra-

polated to 106 GeV. The photon spectral index produced by such

electrons is, however, incompatible with our 90% confidence limits.

If we allow for a break of unity in the interstellar electron spectrum

at 103 GeV corresponding to a confinement lifetime of about 106 years
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then we find consistency with our observed spectral shape but with a

photon flux amounting to only a few percent of our data. Upper limits

given by Kamata et al. (1968) on 104 to 105 GeV electrons from air

shower measurements also fall an order of magnitude below our observed

flux. A break in the interstellar electron spectrum at an energy of

about 6x104 GeV corresponding 'to a lifetime of 104 years would account

for our results via the synchrotron mechanism but we have.no reason for

expecting such a break. The radiative lifetime at this energy is about

1.5x104 years, during which time we would expect < 10 1 galactic super-

novae in our field of view.

Since our best fit to the size of the disk is approximately the

same as the thickness of neutral hydrogen in this region the supra-

thermal model discussed by Boldt (1970) was investigated and found to

consistently require ionization rates ranging from a few times to an

order of magnitude larger than observed or predicted by theoretical

models. The only justification for such a model would be to assume

compact "hot" regions where such large ionization rates could exist.

We have investigated transition radiation as a means of explaining

our effect because of the recent article by Johanssen (1971) suggesting

that relativistic charged particles passing through interstellar grains

could produce hard x-rays, at the energies of interest. Ramaty and

Bleach (1972) have found, however, that because of the small size of

the grains (about 10
'
5 cm) transition radiation could not be produced

in any significant quantity above photon energies on the order of 100

to 200 eV.
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The result of many unresolved low luminosity discrete sources is

capable of producing the effect we observe. Assuming that this sample

is composed of sources of a single luminosity, then there must be a

sufficient number in order to justify the use of our source function (q)

throughout the disk. For objects with intrinsic luminosities greater

36
than about 10 ergs/sec, .our integral source function of about

7x10- 3 0 ergs/cm3 -sec (2-10 keV) implies that less than 102 such sources

could comprise a disk population. Our detectors have sufficient

sensitivity, however, to measure most of these sources as discrete.

A galactic model has been suggested by Ryter (1970) in which the

disk is composed of resolved discrete x-ray sources out to a distance

(d) in the plane of the disk and unresolved sources of the same lumi-

nosity class at distances greater than d. When applied to our results,

this model yields a distance (d) greater than 80 percent of the disk's

extent in the plane. Since the angular extent of the disk using the

above distance is approximately the same for both resolved and un-

resolved sources we have attempted to compare the angular size of our

disk with a disk composed of already resolved sources from the UHURU

catalog (c.f. Giacconi et al., 1971). The resolved galactic sources

found in the region 30° < £ < 330° , excluding sources of strength

> 10
-
1 Tau X-1, would produce an effective disk brightness with

angular extent > 100 based on absolute values of galactic latitude

for source positions. Since this result exceeds our 90% confidence

limit to the angular extent of the disk, we conclude that unresolved
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x-ray sources with intrinsic luminosities similar to previously resolved

low latitude sources probably cannot by themselves adequately describe

our effect.

Our upper limit of 70 for the angular extent of the diffuse

emission corresponds toga galactic disk thickness of 1.2 kpc for a

distance to the edge of the plane equal to 10 kpc. We note that the

UHURU catalog (Giacconi et al., 1971) includes isotropically distributed

objects of relatively weak flux, some of which might be low luminosity

sources within the galaxy. The limiting sensitivity of UHURU to sources

as distant as 0.6 kpc corresponds to an intrinsic luminosity of 1033

ergs/sec. In this case, when UHURU completes a full sky survey with

its limiting sensitivity, it should detect an isotropic distribution

of < 60 sources of intrinsic luminosity < 10 ergs/sec., while the

unresolved sources of the same population in the disk at distances

greater than 0.6 kpc could produce our observed excess.

In conclusion, we have reason to believe that all but unresolved

low luminosity sources are unlikely or negligible contributors to our

observed galactic excess. Further improvements in detector sensi-

tivity and observation time in the succeeding generations of satellite

experiments will make possible measurements of the other mechanisms

previously mentioned as diffuse contributors to galactic x-ray

emission. These observations, for example, could be important tools

in studying the galactic distribution of electrons and other charged

particles.

More frequent x-ray observations of the discrete sources in the

Cygnus region will permit temporal variations to be carefully studied
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in regard to correlating low and high energy x-ray data with other

radiation from these sources. It will then be possible to construct

detailed models of these discrete x-ray objects.



APPENDIX A

SPECTRAL MODELS

Chapter I describes x-ray production mechanisms which have various

spectral shapes. In particular, the inverse Compton and synchrotron

processes usually produce power law spectra of the form d - K Avr
dE

while thermal sources generally have spectra resembling an exponential

shape. In 1966 Tucker calculated the radiation from a hot tenuous plasma

with temperature on the order of 107 °K. The following is a recalculation

of such radiation using ionization equilibrium of Jordan (1970), the

abundance of Nussbaumer and Swings (1970) for iron, the temperature

averaged Gaunt Factors of Karzas and Latter (1961), the abundances of

Brown and Gould (1970), and ionization equilibrium of Tucker (1966) for

other elements. Oscillator strengths for iron line emission were taken

from Chapman (1969) and Allen (1963).

Line emission was calculated only for the 1S llS - lS2P P transition

in FeXXV and FeXXVI because of its suitable energy for detection in our

experiments. FeXXV has resonance, intercombination, and forbidden lines

at 6.70, 6.68, and 6.65 keV respectively while for FeXXVI the Ko, line

energy is at 6.9 keV.

Line Emission. The energy released per sec per unit volume due to

line emission is given by:

dEnn' . ir2 4 f-1/2 Enn' eras
dt = neni 8r2

e4fnn, <gnn, > (6TmkT) - 1 / 2 exp( sec-cm
3

(68)

where ne = number density of electrons

n
i

= number density of ions
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fnn = dipole oscillator strength of the transition from

levels n to n'

<gnn,> = an effective Gaunt factor taken from Regemorter (1962)

and equal to about .205 for 20 < T°K < 100 million degrees

Enn = the energy of the emission line

Bremsstrahlung. The energy emitted per sec per unit volume per

unit energy due to bremsstrahlung by a Maxwellian distribution of electrons

interacting with ions of charge Z is given by

dEB z 24 e6z2 2rm 1/2 - E ergs
dE - en

z
= 33/2 2 3 ( kT) g exp(_~T) ers (69)dtdVdE z e mc sec-cm -erg

where g = the temperature averaged Gaunt factor of Karzas and

Latter (1961)

and the summation is over all ions with charge z.

Recombination. Using the hydrogenic approximation to the recombi-

nation cross section given by Elwert (1954), the energy emitted per unit

time per unit volume per unit energy due to a Maxwellian distribution of

electrons being captured to a quantum level n of an ion with charge z

is given by

dErz = nZn 4 _ m 3/2- (
ddEI = nen8 - A h IH

2 n
-

(2n(-m -32 exp[-(IznE)] ergs~dt~dVdE e z H ~ (2n2) (2kT) ecm3e dt~d =e Hn kT sec-cm3-erg (0

where A = constant = 2.11x10 2 2 cm2

n = the principal quantum number of the final state

(- n) = the incompleted fraction of shell n

= the ionization potential of state nI
z,n
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For temperatures above 20 million degrees most of the atoms are

completely ionized and most recombinations will be at quantum levels

n = (1-2). In this case, dielectronic and higher orders of recombination

can be neglected. Table 6 shows the elements and their abundances for

each model. The ratio of the power in iron line emission to power in

the continuum is at 1 key band centered at 7.0 keV is shown in Figure 17,

as a function of temperature.

Interstellar Absorption. At energies less than about 5 keV absorption

of x-rays by the interstellar medium becomes increasingly important.

Several authors have published x-ray photoelectric absorption cross

sections among them are Bell and Kingston (1967) and Brown and Gould

(1970). The principal contribution of the former authors was the use of

a more accurate cross section for photoionization of atomic helium than

had previously been used, while the latter authors used lower abundances

of helium and neon.

The Bell and Kingston results give an absorption coefficient

Ea 8/3 2
continuous in energy and represented by a(E) E (E ) cm /H atom where

Ea is the e fold transmission energy. Brown and Gould's cross sections

include discontinuities at the K edges of the elements so that the

absorption coefficient can be represented by a(E) oZ ai(E) Ni cm2/H atom

where ai is the cross section one atom of element i and Ni is the

abundance of element i relative to hydrogen. Expressing the transmission

of x-rays through the interstellar medium one must then add the factor

exp(-o(E)NH) (where NH is the number of neutral hydrogen atoms/cm2 in the

line of sight) to any spectral model.

An independent measurement of NH can be found using 21 cm. hydrogen

emission observations. If one assumes that the neutral hydrogen is



70

uniformly distributed, and "optically thin" with constant temperature

Tg, then the number of hydrogen atoms/cm2 in the line of sight is given

by

NH = 1.84x101 8 Tg J' T(v)dv (71)

where Tg = spin temperature of the hydrogen in °K

T(v) = the optical depth

v = radial velocity of the gas relative to the observer

In practice, a velocity-distance relation is used to determine the

limits of integration in equation 1. This relation can be derived from

a differentially rotating galactic model discussed by Schmidt (1965)

and is given by

Vr = Ro [w(R)-W(Ro)] sin(£) cos(b) (72)

where Ro = distance from the galactic center to the sun

w(R) = angular velocity of the hydrogen at a radial distance

R from the galactic center

£ and b = are galactic longitude and latitude respectively

Vr = velocity of hydrogen at radial distance r from

the observer

The angular velocity of hydrogen w(R) is determined from an empirical

formula derived by Contopolous and Stromgren (1965) from radio obser-

vations and given by

w(R) = 67.76 + 50.06R - 4.0448R2 + 0.0861R3 cm/sec (73)

where R is in kpc. This polynominal is applicable for 3 S R · 13 kpc.



71

Thus for a given r and Ro, R can be found and used in equations 72

and 73 to find the radial velocity of the neutral hydrogen at distance r.

The amount of hydrogen within a given distance r from the observer can

then be calculated via equation 71.

The ratio of the amount of hydrogen found from x-ray spectra to

hydrogen found from 21 cq measurements can be used to determine x-ray

source distances if a model for the distribution of the gas is used.

Since the gas density drops with increasing vertical distance Z from

the galactic plane the choice of either a barometric model or a gaussian

model has been used in the past. Assuming a uniform density in the

radial direction for a given latitude the barometric model for inter-

stellar absorption gives

R
NHab = nH(O) Z csc(b) [1 - exp(-Zo csc(b)) ] (74)

where NHab = x-ray absorption in H atoms/cm2

nH(O) = density of hydrogen gas in the galactic disk at b = 0°

Z
o

= e-fold height in density of gas

R = distance of source

In the case of emission

NHem = nH(O) Z
o

csc b (75)

since we can set R = o for low latitude measurements of 21 cm emission.

Tle ratio of equations 74 and 75 is determined from observations. For the

case of a gaussian density distribution we have

ab =R r 2
n(0) exp(- dr (76)

H H) csc b0

and
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em (Zi csc b) 1/2T
NH = nH(0) 2 (77)

where Z
1

= e-fold height of the gaussian distribution.

Fr6m Kerr and Westerhout (1965) the half density point is 110 pc.

at the sun which makes ZO = 158 pc. while for sources off the galactic

plane in the direction of the galactic center for | b > 1° .

Zo s 158 [1-(1 + 100 tan (b)) ] pc. (Ilovaisky, 1970) (78)

The optical depth velocity profiles were taken from Linblad (1965)

where the assumed spin temperature Tg = 1250K. If the spin temperature

fluctuates along the line of sight or the gas density varies so as to

form optically thick regions the values of NHe m could be in consider-

able error. If the optical depth is small, however, then the relation

Tb = TgT where Tb is the temperature brightness is valid. In this case

temperature brightness-velocity curves such as those published by

Muller and Westerhout (1957) may be used in evaluating equation 71.



APPENDIX B

ENERGY CALIBRATION WITH THIN TARGET BREMSSTRAHLUNG

A continuous energy source of x-rays provides a more complete

calibration of the detectors than "line" sources. A monoenergetic

electron beam of 80 keV was used to produce x-rays by striking a .1 mil

aluminum target (see Figure 32). The detector viewed the target at

90° to the incident electron beam and the region between the target and

detector was evacuated to reduce low energy photon absorption. Since

most of the electrons are scattered at small angles, the region in back

of the target was extended to minimize backscattering of electrons which

could ultimately enter the detector.

The theoretical non-relativistic bremsstrahlung cross section was

taken from the results of Motz and Placious (1958) and is given by

do = A (Zf) [° T 2 + 2m ](l-o cos )2d (79)
du = A (- T +- 2mc T + (h,))2 (1-00 Cos 0)-.das (79)
al To + 2mc2 T0 + (hv)2

where A = normalization constant due to distortion of wave functions

by the Coulomb field of the aluminum nucleus

Zeff = the effective atomic number for aluminum when

screening is important

Zal = atomic number of aluminum

T
o

= kinetic energy of incident electron

mc2 = rest mass of the electron

hv = energy of radiated photon

v
Po0 = vo for the incident electron

c

73
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e = angle at which radiation is produced relative to incident

electron beam

d: = Sommerfeld-Kirkpatrick-Wiedmann cross section

The Sommerfeld-Kirkpatrick-Wiedmann cross section is approximated by

equations 2, 8 and 9 in Kirkpatrick and Wiedmann(1945) and for our

experiments 9 = 90° .

Comparing experimental data with equation 79 via the spectral analysis

procedure 1 discussed in Chapter III and normalizing equation 79to the

total number of observed photons we find that in the energy range

5-20 keV acceptable fits occur. Below 5 keV, however, the theoretical

cross-section overestimates the observations by about 30%. This is

probably due to the retardation correction factor used by Motz and

Placious (1958) who claim the error could be as large as a factor of 2.

There are also several experimental errors which become important at low

energies. First, our detector window absorption must be accounted for

and second, absorption of photons escaping from the aluminum target has

to be corrected for. Figure 33 gives an illustration of the theoretical

and experimental spectra normalized to all data between 2 and 20 keV.

The theoretical spectrum was calculated for 80 keV electrons.

Attenuation of photons with energies less than about 5 keV is due to

the detector window, 5 mils of beryllium covering the detector window in

order to eliminate any scattered electrons which might enter the detector,

and a 1 mil mylar window separating the detector from the vacuum system

in which the electrons are produced. All of the window absorption

coefficients were taken from Storm and Israel (1967) and incorporated

in the analysis.
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TABLE II. Photon energies of radioactive calibration
sources (taken from Brisken, A. F. (1971))

RADIOACTIVE CALIBRATION SOURCES
RELATIVE EFFECTIVE

SOURCE MDE TCAY ENEY LINE ENERGY
INTENSITY (KEV)

2 6 Fe5 5 E.C. 2.7 Yr. 5.899 1.0
5.888 .52 5.96

K 6.492 .18

2 7 Co5 7 E.C.
y 270d. 14.37 1.0 14.37

6.404 1.0
K 6.391 .52 6.47

7.059 .19

48Cd1 0 9 E.C. 470d. 22.163 1.0
21.990 .52

K 24.942 .184 22.58
24.912 .092
25.455 .029

RATIO OF 2.984 1.0
L TO K 3.151 .55

ABOUT .2 L 3.346 .20 3.08
2.978 .12
3.235 .085
3.204 .064

5 6 Bo1
3 3 E.C. 7.2 Yr. 30.973 1.0

30.625 .52 
34.987 .205 31.72
34.920 . 103

K 35.896 .074 

6 1PM14 5 E.C. 18 Yr. 37.36 1.0
36.847 .52
42.271 .216 38.30

K 42.166 .108
43.441 .082



TABLE III. Characteristic x-ray line energies (keV)
of various materials.

CHARACTERISTIC X-RAYS FROM
VARIOUS MATERIALS

MEAN
TARGET PHOTON WEIGHTED

MATERIAL TRANSITION ENERGY AVERAGE

Al Ka 1.487 1.487

Ka 2.0141 2.020
P K_ 2142 12.0202

Ka 2.307 2.317
KS 2.468 2.317

lKa 2.622 2.636
CK,8 2.817 2.636

K 3.312
KR 3.589 __

Co Ka 3.690 } 3.719
K8 4.012

Ti 4508Ka 4.5508
Ti _ _ K,8 4.931 5

Cr Ka 5.411 5.467
K/3 5.947 5
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SPECTRA OF THERMAL MODELS
KEV)
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TELEMETRY READOUT FORMAT

WORD-* I 2 THRU 32 33 34 THRU 64

SYNC EACH WORD CONSIST OF READOUT EACH WORD CONSIST OF
I FRAME I WORD READOUT OF I.D. BITS, SCALERS READOUT OF I.D. BITS ADC,

ADC, MARK BIT AND , 8 IT AND SCALER i
64 WORDS SCALER I IC RATE

(FRAME IS -

REPEATED ) 320
CONTINUOUSLY)- MICRO- (I FRAME READOUT TIME 20.48 MILLISECONDS)

SECONDS

BIT- I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

_|SYN I, I I I I I I 0 Ioo0 oo
WORD

--4I -20 MICROSECONDS

BIT-1
WORDS
(2-32)

(34-64)

BIT-4

1.0 BIT A 0 C BIT MR SCLE 90 II 12 1314 5I G I

I.D. BITS A D C BITS MiARlK SCALER 1
BIT

. 1 2 3 4 . 5 . 6 7 8 9 10 11 12 13 14 15 16I

lI I -

WORD WOSI
33 SIG I I I I r I I I I I IU I ,I

SCALAR I

ID BIT CODE

BITS I 2 3
DET.

Al I 0 O0
A2 0 I 0
A3 0 0 I
A4 I I 0
BI I 10 
82 O I I
B3 0 0 0

XENON ARGON
FLAGS FLAGS

FIGURE 11 - Telemetry readout format

I I s11 I I 11 1 I T l 111

SCALAR I'
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DIFFUSE BACKGROUND
SPECTRUM

I I I I I I II I I I I I I 1I

I I I I I 1111 I I I I I I I

10
ENERGY (KEV)

FIGURE 14 - Diffuse background spectrum from the xenon
1st layer for IbI > 3.5° in flight 13.08.
The solid line represents the best fit spectrum
8.2 E-1 4photons (cm2-sec-ster-keV)-l folded
through the detector response. No efficiency
corrections were made to the displayed data.

10.0

1.0

.1

0

4-

4)

0
I

C)

I-
z
0
C-

.0 1 L
I 100



to o 
> I :,C
c, X Z0

_1 )- U
D UO

(D

(.)

0 to 0 o o
I _ T

S338930

101

Z
0
F-
3

0
()

o

Ci,

I-

-J
LL

0
IL-)tO

0
(0

0
I~-

00
w
wIti
Qr
IA

0
a,

0

o

0o

Cu

o E

boC-

Cu

0 s

0-Mv) o >0 0

C

Cu0
04

.-4 C
o 0 Cao 4

r 0

o r

tU ) 0
_ _

LO
4-

q



Cyg
X-2

BOTH COUNTERS
ALL LAYERS
> 1.5 keV

*0

Cyg
X-3

00

3 _ eL S.

0

XENON Ist LAYER
2-8 keV

0

0

200 -

0 * * -0m__~~~~~im~~~~*~~ ~~~ m - -p~~~~ff

ARGON Ist LAYER
1.5-6 keV

*
100

O

*0

0

0
00

&POO·~

FIGURE 16 - Count rate profiles for flight 13.07
top) both counters, middle) xenon 1st layer,
bottom) argon 1st layer.
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RATIO OF POWER IN IRON LINES TO
CONTINUUM vs TEMPERATURE

1 2 3 4 5 6 7 8 9 10

T7 (OK)

Ratio of power emitted by FeXXV and FeXXVI Ka
lines to power emitted in the continuum
(bremsstrahlung plus recombination radiation) in
a 1 keV bin centered at 7.0 keV as a function of
temperature. The trace I represents Brown and
Gould (1970) abundances with the addition of iron
in an abundance determined by Nussbaumer and
Swings (1970). Traces II and III refer to models
2 and 3 of Tucker (1966).
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CYG X-I

t
I I I I I I I I I

10

ENERGY (keV)

FIGURE 18 - Apparent flux observed from Cygnus X-1. The

data points represent the observed count rate
divided by- the nominal exposure and energy
range for the first layer of the xenon filled
counter. No efficiency corrections are made to
the displayed data. The solid line represents
the best-fit spectrum 7.4E 2.6 photons (cm2 -sec-keV)

-

1

folded through tihe detector response.
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CYGNUS X-I SPECTRA
II I I 1"11 I I I I I lL

G.S.F.C. 9/21/70

A.S. E.

RICE
---------- U.C.SD.

U.C.S.D.

.\

\\

\' 

10/11/66

9/29/67
9/13/66

9/ 9/70

I I I I 11111 I I I111 I1

10 100
PHOTON ENERGY (KEV)

FIGURE 19 - Comparison of spectral measurements of Cygnus X-1.
The best-fits are (A.S.E.) 1.50 E-1.7 (RICE)
3.42 E- 1 8 , (UCSD, 1966) 3.58 E - 1 ;93 (GSFC)
7.4 E-2' 6 , (UCSD, 1970) .125E-1.5 . ,
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.1I
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z
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I I I I I I I I I

- CYG X-2

I I I I , I 1 I

10

ENERGY (keV)
FIGURE 20 - Apparent flux observed from Cygnus X-2

using xenon lst layer. The solid line
represents the best-fit spectrum

1.4 exp(-E ) folded through the detector response.
E 4.5
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CYGNUS X-2 SPECTRA

I 10

PHOTON ENERGY (KEV)

FIGURE 21 - Comparison of spectral measurements of Cygnus X-2.
The best fits are:

(A.S.E.) 1.9E6
E

exp(-(1 67 8/3
E

(GSFC) 14 ( E )
E '475
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CYG X-3

I I I I I ,,I
10

FIGURE 22 -

ENERGY ( keV)
Apparent flux observed from Cygnus X-3.

The solid line represents the best-fit spectrum

87 f(E, EO) E-3-9 folded through the detector

response, where f(E, EO) denotes the Brown and

Gould (1970) interstellar opacity at a charac-

teristic energy EO of 4.0 keV. This best-fit was
not acceptable at the 90% confidence level.
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CYGNUS

I I I I I I I I I
10

X-3 SPECTRA

G.S.F.C. 9/21/71

A.S.E. 10/11/66

- - - ROCCHIA 8/20/67
ET AL.

, i ,,,, I I I ,

100

PHOTON ENERGY (KEV)

FIGURE 23 - Comparison of spectral measurements of Cygnus X-3.
The best-fits are:

.58 exp((2.54)8/3 E
(A.S.E.) E exp(-E T -~-3~);

(GSFC) 87 f(E,EO)E' 3
'

9 (see Figure 22);
(Rocchia et al., 1969) .45 E- 1' 5 .
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POINT SOURCE FIT TO GALACTIC PLANE PROFILE
(£= 61.8')

-12 -10 -8 -6 -4 -2 0 +2 +4 +6 +8 +10

GALACTIC LATITUDE (b), DEGREES

DISK MODEL FIT TO GALACTIC PLANE PROFILE
(£= 61.80)

10 F

-12 -10 -8 -6 -4 -2 0 +2 +4 +6 +8

GALACTIC LATITUDE (b), DEGREES

FIGURE 24 - top) Spatial profile of the galactic disk (4 scans
summed) plus 2 data points from galactic latitude
greater than -8° . These data were obtained from
2-8 keV range in xenon 1st layer, 2-9 keV range in
argon 1st layer, and 2-4 keV range in argon 2nd,
3rd, and 4th layers. The dashed line represents
the best-fit to point sources at b=0 ° plus background.
This model was not acceptable at a confidence level
of 92%. bottom) Spatial profile of galactic disk
(same as top) showing best-fit to a disk model plus
background.
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FLIGHT PROFILE
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50

600

550

50°
120 140 160 180 200

I /'~ 1 .. ' -'t 5 0 -
0- H00

220 240 260 280

TIME (SECONDS)

FIGURE 25 - Count rate profile for both counters in
flight 13.08. Galactic longitude vs. time
is shown (scale on left) up to about' 138 seconds
after launch and absolute magnitude of galactic
latitude is shown (scale on right) for 4 scans
of the galactic plane at 2 = 61.8° plus later
portions of the flight (dashed line).
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COLUMNAR DENSITY OF NEUTRAL

HYDROGEN vs LATITUDE

( " 600)
-I I I I I 

I
..... I Im I I I I I I I II I

21 CM DATA SUMMARIZED
BY DALTABUIT (1970)

I I I I IIL

+ b >0 °

- b < 0 °

kpc

R= 10 kpc

-3 x 1020 csc Ib

+

+

1.0 10

I I I 1 *1 I

100

lb I (DEGREES)

FIGURE 27 - Distribution of neutral hydrogen vs. galactic
latitude at galactic longitude 600. Solid line
represents NH = I(z)nocsclbl where I(z) is taken
from Gould (1969),- z = R tan b, and no = .7
H atoms/cm3.
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OBSERVED
GALACTIC DISK SPECTRUM

10 100

PHOTON ENERGY

FIGURE 28 - Observed galactic disk spectrum at b=0°

corrected for efficiency accordirgto
spectral analysis procedure 2.
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= [OBSERVED INTENSITY]- [CALCULATED INTENSITY]

5.6 x 10-21
q= EXP (-E/2.1) PHOTONS (CM3 -SEC-KEV) - 'E

+.16F

+.12F

+.08 -

- - __

-.04

-.08 _

-.12 _

+.16 k q = 8.5 x 10- 21 E- 2 ' 8 PHOTONS (CM3 -SEC-KEV) - i

+.12F

+.08 F
+.04h

oF--

-.04

-.08 F
-. I2

-.16
I I I I I I I II I I I I I I I I

10 100

PHOTON ENERGY (KEV)

FIGURE 29 - Difference in observed and calculated best-fit
source function (q) for exponential and power
law models.
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LINE SOURCE SPECTRA OF GALACTIC DISK
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BLEACH ET AL. (1972)

\ \,\COOKE ET AL. (1969)

\ 4\\
RTZ (1969)

BLEEKER AND
DEERENBERG (1970)
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I I I 1111

10
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102 103

PHOTON ENERGY (KEV)

FIGURE 30 - Comparison of spectral measurements of the

galactic disk. All results have been renormalized

on the basis of a disk with angular thickness 20

by dividing observer's results by the factor

[l+2n(¥2)] where 9 d = FIlM response in galactic

latitude of observer's detector.
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28 30 32
10 10 10

LUMINOSITY

vs INTRINSIC LUMINOSITY

34 .36 38
10 10 10

(ERGS /SEC)

FIGURE 31 - Number of discrete sources in the disk vs. intrinsic
luminosity per source based on the integral photon
source function q=7x10-3 0 ergs/cm3-sec(2-10 keV)
and a disk volume of 4x106 6 cm3 . Reference marks
represent the distance to which UHURU can resolve
discrete sources of that luminosity assuming a
limiting sensitivity of 5x10-lergs/cm2-sec.
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THIN TARGET BREMSSTRAHLUNG SPECTRUM
(80 KeV ELECTRONS, .I MIL. ALUMINUM)

-4-

I I I I I I I I,, I I I I I I I I

10

PHOTON ENERGY (KEV)

FIGURE 33 - Observed spectrum from .1 mil aluminum thin-target
bremsstrahlung using 80 keV'electrons. Solid line
represents the best-fit Kirkpatrick-Wiedmann (1945)
cross section as modified by blotz and Placious (1958)
folded through the detector response.
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